爸爸的朋友在线观看,美国毛片免费看,337p日本在线,亚洲女人日B

初中數(shù)學(xué)優(yōu)秀教案

時(shí)間:2024-11-18 15:16:25 教案 我要投稿

人教版初中數(shù)學(xué)優(yōu)秀教案

  作為一名教學(xué)工作者,可能需要進(jìn)行教案編寫工作,教案有利于教學(xué)水平的提高,有助于教研活動(dòng)的開展。教案應(yīng)該怎么寫呢?下面是小編精心整理的人教版初中數(shù)學(xué)優(yōu)秀教案,供大家參考借鑒,希望可以幫助到有需要的朋友。

人教版初中數(shù)學(xué)優(yōu)秀教案

人教版初中數(shù)學(xué)優(yōu)秀教案1

  教學(xué)目標(biāo):

  1、掌握一元二次方程的根與系數(shù)的關(guān)系并會(huì)初步應(yīng)用。

  2、培養(yǎng)學(xué)生分析、觀察、歸納的能力和推理論證的能力。

  3、滲透由特殊到一般,再由一般到特殊的認(rèn)識(shí)事物的規(guī)律。

  4、培養(yǎng)學(xué)生去發(fā)現(xiàn)規(guī)律的積極性及勇于探索的精神。

  教學(xué)重點(diǎn)與難點(diǎn):

  重點(diǎn)

  根與系數(shù)的關(guān)系及其推導(dǎo)

  難點(diǎn)

  正確理解根與系數(shù)的關(guān)系。一元二次方程根與系數(shù)的關(guān)系是指一元二次方程兩根的和、兩根的積與系數(shù)的關(guān)系。

  教學(xué)過程:

  一、復(fù)習(xí)引入

  1、已知方程x2-ax-3a=0的一個(gè)根是6,則求a及另一個(gè)根的值。

  2、由上題可知一元二次方程的系數(shù)與根有著密切的關(guān)系。其實(shí)我們已學(xué)過的求根公式也反映了根與系數(shù)的關(guān)系,這種關(guān)系比較復(fù)雜,是否有更簡潔的關(guān)系?

  3、由求根公式可知,一元二次方程ax2+bx+c=0(a≠0)的兩根為x1=-b+b2-4ac2a,x2=-b-b2-4ac2a.觀察兩式右邊,分母相同,分子是-b+b2-4ac與-b-b2-4ac.兩根之間通過什么計(jì)算才能得到更簡潔的'關(guān)系?

  二、探索新知

  解下列方程,并填寫表格:

  方程x1 x2 x1+x2 x1x2

  x2-2x=0

  x2+3x-4=0

  x2-5x+6=0

  觀察上面的表格,你能得到什么結(jié)論?

 。1)關(guān)于x的方程x2+px+q=0(p,q為常數(shù),p2-4q≥0)的兩根x1,x2與系數(shù)p,q之間有什么關(guān)系?

 。2)關(guān)于x的方程ax2+bx+c=0(a≠0)的兩根x1,x2與系數(shù)a,b,c之間又有何關(guān)系呢?你能證明你的猜想嗎?

  解下列方程,并填寫表格:

  方程x1 x2 x1+x2 x1x2

  2x2-7x-4=0

  3x2+2x-5=0

  5x2-17x+6=0

  小結(jié):根與系數(shù)關(guān)系:

 。1)關(guān)于x的方程x2+px+q=0(p,q為常數(shù),p2-4q≥0)的兩根x1,x2與系數(shù)p,q的關(guān)系是:x1+x2=-p,x1x2=q(注意:根與系數(shù)關(guān)系的前提條件是根的判別式必須大于或等于零。)

  (2)形如ax2+bx+c=0(a≠0)的方程,可以先將二次項(xiàng)系數(shù)化為1,再利用上面的結(jié)論。

  即:對于方程ax2+bx+c=0(a≠0)

  ∵a≠0,∴x2+bax+ca=0

  ∴x1+x2=-ba,x1x2=ca

 。ǹ梢岳们蟾浇o出證明)

  例1不解方程,寫出下列方程的兩根和與兩根積:

  (1)x2-3x-1=0   (2)2x2+3x-5=0

  (3)13x2-2x=0 (4)2x2+6x=3

  (5)x2-1=0 (6)x2-2x+1=0

  例2不解方程,檢驗(yàn)下列方程的解是否正確?

  (1)x2-22x+1=0 (x1=2+1,x2=2-1)

  (2)2x2-3x-8=0 (x1=7+734,x2=5-734)

  例3已知一元二次方程的兩個(gè)根是-1和2,請你寫出一個(gè)符合條件的方程。(你有幾種方法?)

  例4已知方程2x2+kx-9=0的一個(gè)根是-3,求另一根及k的值。

  變式一:已知方程x2-2kx-9=0的兩根互為相反數(shù),求k;

  變式二:已知方程2x2-5x+k=0的兩根互為倒數(shù),求k.

  三、課堂小結(jié)

  1、根與系數(shù)的關(guān)系。

  2、根與系數(shù)關(guān)系使用的前提是:(1)是一元二次方程;(2)判別式大于等于零。

  四、作業(yè)布置

  1、不解方程,寫出下列方程的兩根和與兩根積。

  (1)x2-5x-3=0 (2)9x+2=x2 (3)6x2-3x+2=0

  (4)3x2+x+1=0

  2、已知方程x2-3x+m=0的一個(gè)根為1,求另一根及m的值。

  3、已知方程x2+bx+6=0的一個(gè)根為-2,求另一根及b的值

人教版初中數(shù)學(xué)優(yōu)秀教案2

  一、教學(xué)目標(biāo)

  1、了解二次根式的意義;

  2、掌握用簡單的一元一次不等式解決二次根式中字母的取值問題;

  3、掌握二次根式的性質(zhì)和,并能靈活應(yīng)用;

  4、通過二次根式的計(jì)算培養(yǎng)學(xué)生的邏輯思維能力;

  5、通過二次根式性質(zhì)和的介紹滲透對稱性、規(guī)律性的數(shù)學(xué)美。

  二、教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):

  (1)二次根的意義;

  (2)二次根式中字母的取值范圍。

  難點(diǎn):確定二次根式中字母的取值范圍。

  三、教學(xué)方法

  啟發(fā)式、講練結(jié)合。

  四、教學(xué)過程

 。ㄒ唬⿵(fù)習(xí)提問

  1、什么叫平方根、算術(shù)平方根?

  2、說出下列各式的意義,并計(jì)算

 。ǘ┮胄抡n

  新課:二次根式

  定義:式子叫做二次根式。

  對于請同學(xué)們討論論應(yīng)注意的問題,引導(dǎo)學(xué)生總結(jié):

 。1)式子只有在條件a≥0時(shí)才叫二次根式,是二次根式嗎?呢?

  若根式中含有字母必須保證根號下式子大于等于零,因此字母范圍的限制也是根式的一部分。

  (2)是二次根式,而,提問學(xué)生:2是二次根式嗎?顯然不是,因此二次

  根式指的是某種式子的“外在形態(tài)”。請學(xué)生舉出幾個(gè)二次根式的例子,并說明為什么是二次根式。下面例題根據(jù)二次根式定義,由學(xué)生分析、回答。

  例1當(dāng)a為實(shí)數(shù)時(shí),下列各式中哪些是二次根式?

  例2 x是怎樣的實(shí)數(shù)時(shí),式子在實(shí)數(shù)范圍有意義?

  解:略。

  說明:這個(gè)問題實(shí)質(zhì)上是在x是什么數(shù)時(shí),x—3是非負(fù)數(shù),式子有意義。

  例3當(dāng)字母取何值時(shí),下列各式為二次根式:

  分析:由二次根式的定義,被開方數(shù)必須是非負(fù)數(shù),把問題轉(zhuǎn)化為解不等式。

  解:

 。1)∵a、b為任意實(shí)數(shù)時(shí),都有a2+b2≥0,∴當(dāng)a、b為任意實(shí)數(shù)時(shí),是二次根式。

 。2)—3x≥0,x≤0,即x≤0時(shí),是二次根式。

 。3),且x≠0,∴x>0,當(dāng)x>0時(shí),是二次根式。

 。4),即,故x—2≥0且x—2≠0,∴x>2。當(dāng)x>2時(shí),是二次根式。

  例4下列各式是二次根式,求式子中的字母所滿足的.條件:

  分析:這個(gè)例題根據(jù)二次根式定義,讓學(xué)生分析式子中字母應(yīng)滿足的條件,進(jìn)一步鞏固二次根式的定義。即:只有在條件a≥0時(shí)才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開方數(shù)都大于等于零。

  解:

 。1)由2a+3≥0,得。

 。2)由,得3a—1>0,解得。

 。3)由于x取任何實(shí)數(shù)時(shí)都有|x|≥0,因此|x|+0.1>0,于是,式子是二次根式。所以所求字母x的取值范圍是全體實(shí)數(shù)。

  (4)由—b2≥0得b2≤0,只有當(dāng)b=0時(shí),才有b2=0,因此,字母b所滿足的條件是:b=0。

人教版初中數(shù)學(xué)優(yōu)秀教案3

  教學(xué)目標(biāo)

  1、理解并掌握等腰三角形的判定定理及推論

  2、能利用其性質(zhì)與判定證明線段或角的相等關(guān)系.

  教學(xué)重點(diǎn):

  等腰三角形的判定定理及推論的運(yùn)用

  教學(xué)難點(diǎn):

  正確區(qū)分等腰三角形的判定與性質(zhì),能夠利用等腰三角形的判定定理證明線段的相等關(guān)系.

  教學(xué)過程:

 一、復(fù)習(xí)等腰三角形的性質(zhì)

  二、新授:

  I提出問題,創(chuàng)設(shè)情境

  出示投影片.某地質(zhì)專家為估測一條東西流向河流的寬度,選擇河流北岸上一棵樹(B點(diǎn))為B標(biāo),然后在這棵樹的正南方(南岸A點(diǎn)抽一小旗作標(biāo)志)沿南偏東60°方向走一段距離到C處時(shí),測得∠ACB為30°,這時(shí),地質(zhì)專家測得AC的長度就可知河流寬度.

  學(xué)生們很想知道,這樣估測河流寬度的根據(jù)是什么?帶著這個(gè)問題,引導(dǎo)學(xué)生學(xué)習(xí)“等腰三角形的判定”.

  II引入新課

  1.由性質(zhì)定理的題設(shè)和結(jié)論的變化,引出研究的內(nèi)容——在△ABC中,苦∠B=∠C,則AB=AC嗎?

  作一個(gè)兩個(gè)角相等的三角形,然后觀察兩等角所對的邊有什么關(guān)系?

  2.引導(dǎo)學(xué)生根據(jù)圖形,寫出已知、求證.

  2、小結(jié),通過論證,這個(gè)命題是真命題,即“等腰三角形的判定定理”(板書定理名稱).

  強(qiáng)調(diào)此定理是在一個(gè)三角形中把角的'相等關(guān)系轉(zhuǎn)化成邊的相等關(guān)系的重要依據(jù),類似于性質(zhì)定理可簡稱“等角對等邊”.

  4.引導(dǎo)學(xué)生說出引例中地質(zhì)專家的測量方法的根據(jù).

人教版初中數(shù)學(xué)優(yōu)秀教案4

  教學(xué)內(nèi)容

  本節(jié)課主要介紹全等三角形的概念和性質(zhì)

  教學(xué)目標(biāo)

  1.知識(shí)與技能

  領(lǐng)會(huì)全等三角形對應(yīng)邊和對應(yīng)角相等的有關(guān)概念

  2.過程與方法

  經(jīng)歷探索全等三角形性質(zhì)的過程,能在全等三角形中正確找出對應(yīng)邊、對應(yīng)角

  3.情感、態(tài)度與價(jià)值觀

  培養(yǎng)觀察、操作、分析能力,體會(huì)全等三角形的應(yīng)用價(jià)值

  重、難點(diǎn)與關(guān)鍵

  1.重點(diǎn):會(huì)確定全等三角形的對應(yīng)元素

  2.難點(diǎn):掌握找對應(yīng)邊、對應(yīng)角的方法

  3.關(guān)鍵:找對應(yīng)邊、對應(yīng)角有下面兩種方法:

  (1)全等三角形對應(yīng)角所對的邊是對應(yīng)邊,兩個(gè)對應(yīng)角所夾的邊是對應(yīng)邊;

  (2)對應(yīng)邊所對的角是對應(yīng)角,?兩條對應(yīng)邊所夾的角是對應(yīng)角

  教具準(zhǔn)備

  四張大小一樣的紙片、直尺、剪刀

  教學(xué)方法

  采用“直觀──感悟”的教學(xué)方法,讓學(xué)生自己舉出形狀、大小相同的實(shí)例,加深認(rèn)識(shí)

  教學(xué)過程

  一、動(dòng)手操作,導(dǎo)入課題

  1.先在其中一張紙上畫出任意一個(gè)多邊形,再用剪刀剪下,?思考得到的圖形有何特點(diǎn)?

  2.重新在一張紙板上畫出任意一個(gè)三角形,再用剪刀剪下,?思考得到的圖形有何特點(diǎn)?

  【學(xué)生活動(dòng)】動(dòng)手操作、用腦思考、與同伴討論,得出結(jié)論

  【教師活動(dòng)】指導(dǎo)學(xué)生用剪刀剪出重疊的兩個(gè)多邊形和三角形

  學(xué)生在操作過程中,教師要讓學(xué)生事先在紙上畫出三角形,然后固定重疊的兩張紙,注意整個(gè)過程要細(xì)心

  【互動(dòng)交流】剪出的多邊形和三角形,可以看出:形狀、大小相同,能夠完全重合。這樣的.兩個(gè)圖形叫做全等形,用“≌”表示

  概念:能夠完全重合的兩個(gè)三角形叫做全等三角形

  【教師活動(dòng)】在紙版上任意剪下一個(gè)三角形,要求學(xué)生手拿一個(gè)三角形,做如下運(yùn)動(dòng):平移、翻折、旋轉(zhuǎn),觀察其運(yùn)動(dòng)前后的三角形會(huì)全等嗎?

  【學(xué)生活動(dòng)】動(dòng)手操作,實(shí)踐感知,得出結(jié)論:兩個(gè)三角形全等

  【教師活動(dòng)】要求學(xué)生用字母表示出每個(gè)剪下的三角形,同時(shí)互相指出每個(gè)三角形的頂點(diǎn)、三個(gè)角、三條邊、每條邊的邊角、每個(gè)角的對邊

  【學(xué)生活動(dòng)】把兩個(gè)三角形按上述要求標(biāo)上字母,并任意放置,與同桌交流:

  (1)何時(shí)能完全重在一起?

  (2)此時(shí)它們的頂點(diǎn)、邊、角有何特點(diǎn)?

  【交流討論】通過同桌交流,實(shí)驗(yàn)得出下面結(jié)論:

  1.任意放置時(shí),并不一定完全重合,只有當(dāng)把相同的角旋轉(zhuǎn)到一起時(shí)才能完全重合

  2.這時(shí)它們的三個(gè)頂點(diǎn)、三條邊和三個(gè)內(nèi)角分別重合了

  3.完全重合說明三條邊對應(yīng)相等,三個(gè)內(nèi)角對應(yīng)相等?對應(yīng)頂點(diǎn)在相對應(yīng)的位置

人教版初中數(shù)學(xué)優(yōu)秀教案5

  教學(xué)目標(biāo)

  教學(xué)知識(shí)點(diǎn):能運(yùn)用勾股定理及直角三角形的判別條件(即勾股定理的逆定理)解決簡單的實(shí)際問題.

  能力訓(xùn)練要求:1.學(xué)會(huì)觀察圖形,勇于探索圖形間的關(guān)系,培養(yǎng)學(xué)生的空間觀念.

  2.在將實(shí)際問題抽象成幾何圖形過程中,提高分析問題、解決問題的能力及滲透數(shù)學(xué)建模的思想.

  情感與價(jià)值觀要求:1.通過有趣的問題提高學(xué)習(xí)數(shù)學(xué)的興趣.

  2.在解決實(shí)際問題的過程中,體驗(yàn)數(shù)學(xué)學(xué)習(xí)的實(shí)用性,體現(xiàn)人人都學(xué)有用的數(shù)學(xué).

  教學(xué)重點(diǎn)難點(diǎn):

  重點(diǎn):探索、發(fā)現(xiàn)給定事物中隱含的勾股定理及其逆及理,并用它們解決生活實(shí)際問題.

  難點(diǎn):利用數(shù)學(xué)中的建模思想構(gòu)造直角三角形,利用勾股定理及逆定理,解決實(shí)際問題.

  教學(xué)過程

  1、創(chuàng)設(shè)問題情境,引入新課:

  前幾節(jié)課我們學(xué)習(xí)了勾股定理,你還記得它有什么作用嗎?

  例如:欲登12米高的建筑物,為安全需要,需使梯子底端離建筑物5米,至少需多長的梯子?

  根據(jù)題意,(如圖)AC是建筑物,則AC=12米,BC=5米,AB是梯子的長度.所以在Rt△ABC中,AB2=AC2+BC2=122+52=132;AB=13米.

  所以至少需13米長的梯子.

  2、講授新課:①、螞蟻怎么走最近

  出示問題:有一個(gè)圓柱,它的高等于12厘米,底面半徑等于3厘米.在圓行柱的底面A點(diǎn)有一只螞蟻,它想吃到上底面上與A點(diǎn)相對的B點(diǎn)處的食物,需要爬行的的最短路程是多少?(π的值取3).

  (1)同學(xué)們可自己做一個(gè)圓柱,嘗試從A點(diǎn)到B點(diǎn)沿圓柱的側(cè)面畫出幾條路線,你覺得哪條路線最短呢?(小組討論)

  (2)如圖,將圓柱側(cè)面剪開展開成一個(gè)長方形,從A點(diǎn)到B點(diǎn)的最短路線是什么?你畫對了嗎?

  (3)螞蟻從A點(diǎn)出發(fā),想吃到B點(diǎn)上的食物,它沿圓柱側(cè)面爬行的最短路程是多少?(學(xué)生分組討論,公布結(jié)果)

  我們知道,圓柱的側(cè)面展開圖是一長方形.好了,現(xiàn)在咱們就用剪刀沿母線AA′將圓柱的側(cè)面展開(如下圖).

  我們不難發(fā)現(xiàn),剛才幾位同學(xué)的走法:

  (1)A→A′→B;(2)A→B′→B;

  (3)A→D→B;(4)A—→B.

  哪條路線是最短呢?你畫對了嗎?

  第(4)條路線最短.因?yàn)椤皟牲c(diǎn)之間的連線中線段最短”.

 、、做一做:教材14頁。李叔叔隨身只帶卷尺檢測AD,BC是否與底邊AB垂直,也就是要檢測∠DAB=90°,∠CBA=90°.連結(jié)BD或AC,也就是要檢測△DAB和△CBA是否為直角三角形.很顯然,這是一個(gè)需用勾股定理的逆定理來解決的實(shí)際問題.

 、、隨堂練習(xí)

  出示投影片

  1.甲、乙兩位探險(xiǎn)者,到沙漠進(jìn)行探險(xiǎn).某日早晨8∶00甲先出發(fā),他以6千米/時(shí)的速度向東行走.1時(shí)后乙出發(fā),他以5千米/時(shí)的速度向北行進(jìn).上午10∶00,甲、乙兩人相距多遠(yuǎn)?

  2.如圖,有一個(gè)高1.5米,半徑是1米的圓柱形油桶,在靠近邊的地方有一小孔,從孔中插入一鐵棒,已知鐵棒在油桶外的部分是0.5米,問這根鐵棒應(yīng)有多長?

  1.分析:首先我們需要根據(jù)題意將實(shí)際問題轉(zhuǎn)化成數(shù)學(xué)模型.

  解:(如圖)根據(jù)題意,可知A是甲、乙的出發(fā)點(diǎn),10∶00時(shí)甲到達(dá)B點(diǎn),則AB=2×6=12(千米);乙到達(dá)C點(diǎn),則AC=1×5=5(千米).

  在Rt△ABC中,BC2=AC2+AB2=52+122=169=132,所以BC=13千米.即甲、乙兩人相距13千米.

  2.分析:從題意可知,沒有告訴鐵棒是如何插入油桶中,因而鐵棒的長是一個(gè)取值范圍而不是固定的長度,所以鐵棒最長時(shí),是插入至底部的A點(diǎn)處,鐵棒最短時(shí)是垂直于底面時(shí).

  解:設(shè)伸入油桶中的長度為x米,則應(yīng)求最長時(shí)和最短時(shí)的值.

  (1)x2=1.52+22,x2=6.25,x=2.5

  所以最長是2.5+0.5=3(米).

  (2)x=1.5,最短是1.5+0.5=2(米).

  答:這根鐵棒的長應(yīng)在2~3米之間(包含2米、3米).

  3.試一試(課本P15)

  在我國古代數(shù)學(xué)著作《九章算術(shù)》中記載了一道有趣的'問題,這個(gè)問題的意思是:有一個(gè)水池,水面是一個(gè)邊長為10尺的正方形.在水池正中央有一根新生的蘆葦,它高出水面1尺.如果把這根蘆葦垂直拉向岸邊,它的頂端恰好到達(dá)岸邊的水面.請問這個(gè)水池的深度和這根蘆葦?shù)拈L度各為多少?

  我們可以將這個(gè)實(shí)際問題轉(zhuǎn)化成數(shù)學(xué)模型.

  解:如圖,設(shè)水深為x尺,則蘆葦長為(x+1)尺,由勾股定理可求得

  (x+1)2=x2+52,x2+2x+1=x2+25

  解得x=12

  則水池的深度為12尺,蘆葦長13尺.

  ④、課時(shí)小結(jié)

  這節(jié)課我們利用勾股定理和它的逆定理解決了生活中的幾個(gè)實(shí)際問題.我們從中可以發(fā)現(xiàn)用數(shù)學(xué)知識(shí)解決這些實(shí)際問題,更為重要的是將它們轉(zhuǎn)化成數(shù)學(xué)模型.

 、、課后作業(yè)

  課本P25、習(xí)題1.52

人教版初中數(shù)學(xué)優(yōu)秀教案6

  學(xué)習(xí)目標(biāo):

  1、進(jìn)一步理解平均數(shù)、中位數(shù)和眾數(shù)等統(tǒng)計(jì)量的統(tǒng)計(jì)意義。

  2、會(huì)計(jì)算加權(quán)平均數(shù),理解“權(quán)”的意義,能選擇適當(dāng)?shù)慕y(tǒng)計(jì)量表示數(shù)據(jù)的集中趨勢。

  3、會(huì)計(jì)算極差和方差,理解它們的統(tǒng)計(jì)意義,會(huì)用它們表示數(shù)據(jù)的波動(dòng)情況。

  4、會(huì)用樣本平均數(shù)、方差估計(jì)總體的平均數(shù)、方差,進(jìn)一步感受抽樣的必要性,體會(huì)用樣本估計(jì)總體的思想。

  一、知識(shí)點(diǎn)回顧

  1、數(shù)學(xué)期末總評成績由作業(yè)分?jǐn)?shù),課堂參與分?jǐn)?shù),期考分?jǐn)?shù)三部分組成,并按3:3:4的比例確定。已知小明的期考80分,作業(yè)90分,課堂參與85分,則他的總評成績?yōu)開_______。

  2、樣本1、2、3、0、1的平均數(shù)與中位數(shù)之和等于___.

  3、一組數(shù)據(jù)5,-2,3,x,3,-2,若每個(gè)數(shù)據(jù)都是這組數(shù)據(jù)的眾數(shù),則這組數(shù)據(jù)的平均數(shù)是.

  4、數(shù)據(jù)1,6,3,9,8的極差是

  5、已知一個(gè)樣本:1,3,5,x,2,它的平均數(shù)為3,則這個(gè)樣本的方差是。

  二、專題練習(xí)

  1、方程思想:

  例:某次考試A、B、C、D、E這5名學(xué)生的平均分為62分,若學(xué)生A除外,其余學(xué)生的平均得分為60分,那么學(xué)生A的得分是_____________.

  點(diǎn)撥:本題可以用統(tǒng)計(jì)學(xué)知識(shí)和方程組相結(jié)合來解決。

  同類題連接:一班級組織一批學(xué)生去春游,預(yù)計(jì)共需費(fèi)用120元,后來又有2人參加進(jìn)來,總費(fèi)用不變,于是每人可以少分?jǐn)?元,設(shè)原來參加春游的學(xué)生x人?闪蟹匠蹋

  2、分類討論法:

  例:汶川大地震牽動(dòng)每個(gè)人的心,一方有難,八方支援,5位衢州籍在外打工人員也捐款獻(xiàn)愛心。已知5人平均捐款560元(每人捐款數(shù)額均為百元的整數(shù)倍),捐款數(shù)額最少的也捐了200元,最多的(只有1人)捐了800元,其中一人捐600元,600元恰好是5人捐款數(shù)額的中位數(shù),那么其余兩人的捐款數(shù)額分別是___________;

  點(diǎn)撥:做題過程中要注意滿足的`條件。

  同類題連接:數(shù)據(jù)-1 , 3 , 0 , x的極差是5 ,則x =_____.

  3、平均數(shù)、中位數(shù)、眾數(shù)在實(shí)際問題中的應(yīng)用

  例:某班50人右眼視力檢查結(jié)果如下表所示:

  視力0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1.0 1.2 1.5

  人數(shù)2 2 2 3 3 4 5 6 7 11 5

  求該班學(xué)生右眼視力的平均數(shù)、眾數(shù)與中位數(shù).發(fā)表一下自己的看法。

  4、方差在實(shí)際問題中的應(yīng)用

  例:甲、乙兩名射擊運(yùn)動(dòng)員在相同條件下各射靶5次,各次命中的環(huán)數(shù)如下:

  甲:5 8 8 9 10

  乙:9 6 10 5 10

  (1)分別計(jì)算每人的平均成績;

  (2)求出每組數(shù)據(jù)的方差;

  (3)誰的射擊成績比較穩(wěn)定?

  三、知識(shí)點(diǎn)回顧

  1、平均數(shù):

  練習(xí):在一次英語口試中,已知50分1人、60分2人、70分5人、90分5人、100分1人,其余為84分。已知該班平均成績?yōu)?0分,問該班有多少人?

  2、中位數(shù)和眾數(shù)

  練習(xí):1.一組數(shù)據(jù)23、27、20、18、X、12,它的中位數(shù)是21,則X的值是.

  2.如果在一組數(shù)據(jù)中,23、25、28、22出現(xiàn)的次數(shù)依次為2、5、3、4次,并且沒有其他的數(shù)據(jù),則這組數(shù)據(jù)的眾數(shù)和中位數(shù)分別是( )

  A.24、25 B.23、24 C.25、25 D.23、25

  3.在一次環(huán)保知識(shí)競賽中,某班50名學(xué)生成績?nèi)缦卤硭荆?/p>

  得分50 60 70 80 90 100 110 120

  人數(shù)2 3 6 14 15 5 4 1

  分別求出這些學(xué)生成績的眾數(shù)、中位數(shù)和平均數(shù).

  3.極差和方差

  練習(xí):1.一組數(shù)據(jù)X 、X …X的極差是8,則另一組數(shù)據(jù)2X +1、2X +1…,2X +1的極差是( )

  A. 8 B.16 C.9 D.17

  2.如果樣本方差,

  那么這個(gè)樣本的平均數(shù)為.樣本容量為.

  四、自主探究

  1、已知:1、2、3、4、5、這五個(gè)數(shù)的平均數(shù)是3,方差是2.

  則:101、102、103、104、105、的平均數(shù)是,方差是。

  2、4、6、8、10、的平均數(shù)是,方差是。

  你會(huì)發(fā)現(xiàn)什么規(guī)律?

  2、應(yīng)用上面的規(guī)律填空:

  若n個(gè)數(shù)據(jù)x1x2……xn的平均數(shù)為m,方差為w。

  (1)n個(gè)新數(shù)據(jù)x1+100,x2+100, …… xn+100的平均數(shù)是,方差為。

  (2)n個(gè)新數(shù)據(jù)5x1,5x2, ……5xn的平均數(shù),方差為。

  五、學(xué)后反思:

  xxx

【初中數(shù)學(xué)優(yōu)秀教案】相關(guān)文章:

初中數(shù)學(xué)優(yōu)秀教案10-19

初中數(shù)學(xué)教案04-15

初中數(shù)學(xué)教學(xué)教案04-24

(優(yōu)秀)初中數(shù)學(xué)教學(xué)反思07-05

初中數(shù)學(xué)教學(xué)反思(優(yōu)秀)07-07

初中數(shù)學(xué)教學(xué)教案【熱】10-19

初中數(shù)學(xué)教學(xué)優(yōu)質(zhì)教案02-06

初中數(shù)學(xué)教案模板12-01

小學(xué)數(shù)學(xué)優(yōu)秀教案05-22