爸爸的朋友在线观看,美国毛片免费看,337p日本在线,亚洲女人日B

因式分解教案

時(shí)間:2022-02-03 12:55:42 教案 我要投稿

因式分解教案匯編6篇

  在教學(xué)工作者開(kāi)展教學(xué)活動(dòng)前,往往需要進(jìn)行教案編寫(xiě)工作,教案有助于順利而有效地開(kāi)展教學(xué)活動(dòng)。那么教案應(yīng)該怎么寫(xiě)才合適呢?以下是小編整理的因式分解教案6篇,供大家參考借鑒,希望可以幫助到有需要的朋友。

因式分解教案匯編6篇

因式分解教案 篇1

  一、教材分析

  1、教材的地位與作用

  “整式的乘法”是整式的加減的后續(xù)學(xué)習(xí)從冪的運(yùn)算到各種整式的乘法,整章教材都突出了學(xué)生的自主探索過(guò)程,依據(jù)原有的知識(shí)基礎(chǔ),或運(yùn)用乘法的各種運(yùn)算規(guī)律,或借助直觀而又形象的圖形面積,得到各種運(yùn)算的基本法則、兩個(gè)主要的乘法公式及因式分解的基本方法學(xué)生自己對(duì)知識(shí)內(nèi)容的探索、認(rèn)識(shí)與體驗(yàn),完全有利于學(xué)生形成合理的知識(shí)結(jié)構(gòu),提高數(shù)學(xué)思維能力.利用公式法進(jìn)行因式分解時(shí),注意把握多項(xiàng)式的特點(diǎn),對(duì)比乘法公式乘積結(jié)果的形式,選擇正確的分解方法。

  因式分解是一種常用的代數(shù)式的恒等變形,因式分解是多項(xiàng)式乘法公式的逆向變形,它是將一個(gè)多項(xiàng)式變形為多項(xiàng)式與多項(xiàng)式的乘積。

  2、教學(xué)目標(biāo)

  (1)會(huì)推導(dǎo)乘法公式

 。2)在應(yīng)用乘法公式進(jìn)行計(jì)算的基礎(chǔ)上,感受乘法公式的作用和價(jià)值。

 。3)會(huì)用提公因式法、公式法進(jìn)行因式分解。

 。4)了解因式分解的一般步驟。

 。5)在因式分解中,經(jīng)歷觀察、探索和做出推斷的過(guò)程,提高分析問(wèn)題和解決問(wèn)題的能力。

  3、重點(diǎn)、難點(diǎn)和關(guān)鍵

  重點(diǎn):乘法公式的意義、分式的由來(lái)和正確運(yùn)用;用提公因式法和公式法進(jìn)行因式分解。

  難點(diǎn):正確運(yùn)用乘法公式;正確分解因式。

  關(guān)鍵:正確理解乘法公式和因式分解的意義。

  二、本單元教學(xué)的方法和策略:

  1.注重知識(shí)形成的探索過(guò)程,讓學(xué)生在探索過(guò)程中領(lǐng)悟知識(shí),在領(lǐng)悟過(guò)程中建構(gòu)體系,從而更好地實(shí)現(xiàn)知識(shí)體系的更新和知識(shí)的.正向遷移.

  2.知識(shí)內(nèi)容的呈現(xiàn)方式力求與學(xué)生已有的知識(shí)結(jié)構(gòu)相聯(lián)系,同時(shí)兼顧學(xué)生的思維水平和心理特征.

  3.讓學(xué)生掌握基本的數(shù)學(xué)事實(shí)與數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),減輕不必要的記憶負(fù)擔(dān).

  4.注意從生活中選取素材,給學(xué)生提供一些交流、討論的空間,讓學(xué)生從中體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值,逐步養(yǎng)成談數(shù)學(xué)、想數(shù)學(xué)、做數(shù)學(xué)的良好習(xí)慣.

  三、課時(shí)安排:

  2.1平方差公式 1課時(shí)

  2.2完全平方公式 2課時(shí)

  2.3用提公因式法進(jìn)行因式分解 1課時(shí)

  2.4用公式法進(jìn)行因式分解 2課時(shí)

因式分解教案 篇2

  學(xué)習(xí)目標(biāo)

  1、 學(xué)會(huì)用公式法因式法分解

  2、綜合運(yùn)用提取公式法、公式法分解因式

  學(xué)習(xí)重難點(diǎn) 重點(diǎn):

  完全平方公式分解因式.

  難點(diǎn):綜合運(yùn)用兩種公式法因式分解

  自學(xué)過(guò)程設(shè)計(jì)

  完全平方公式:

  完全平方公式的逆運(yùn)用:

  做一做:

  1.(1)16x2-8x+_______=(4x-1)2;

  (2)_______+6x+9=(x+3)2;

  (3)16x2+_______+9y2=(4x+3y)2;

  (4)(a-b)2-2(a-b)+1=(______-1)2.

  2.在代數(shù)式(1)a2+ab+b2;(2)4a2+4a+1;(3)a2-b2+2ab;(4)-4a2+12ab-9b2中,可用完全平方公式因式分解的是_________(填序號(hào))

  3.下列因式分解正確的'是( )

  A.x2+y2=(x+y)2 B.x2-xy+x2=(x-y)2

  C.1+4x-4x2=(1-2x)2 D.4-4x+x2=(x-2)2

  4.分解因式:(1)x2-22x+121 (2)-y2-14y-49 (3)(a+b)2+2(a+b)+1

  5.計(jì)算:20062-40102006+20052=___________________.

  6.若x+y=1,則 x2+xy+ y2的值是_________________.

  想一想

  你還有哪些地方不是很懂?請(qǐng)寫(xiě)出來(lái)。

  ____________________________________________________________________________________ 預(yù)習(xí)展示一:

  1.判別下列各式是不是完全平方式.

  2、把下列各式因式分解:

  (1)-x2+4xy-4y2

  (2)3ax2+6axy+3ay2

  (3)(2x+y)2-6(2x+y)+9

  應(yīng)用探究:

  1、用簡(jiǎn)便方法計(jì)算

  49.92+9.98 +0.12

  拓展提高:

  (1)( a2+b2)( a2+b2 10)+25=0 求a2+b2

  (2)4x2+y2-4xy-12x+6y+9=0

  求x、y關(guān)系

  (3)分解因式:m4+4

  教后反思 考察利用公式法因式分解的題目不會(huì)很難,但是需要學(xué)生記住公式的形式,之后利用公式把式子進(jìn)行變形,從而達(dá)到進(jìn)行因式分解的目的,但是這里有用到實(shí)際中去的例子,對(duì)學(xué)生來(lái)說(shuō)會(huì)難一些。

因式分解教案 篇3

  教學(xué)目標(biāo):

  1、進(jìn)一步鞏固因式分解的概念;

  2、鞏固因式分解常用的三種方法

  3、選擇恰當(dāng)?shù)姆椒ㄟM(jìn)行因式分解4、應(yīng)用因式分解來(lái)解決一些實(shí)際問(wèn)題

  5、體驗(yàn)應(yīng)用知識(shí)解決問(wèn)題的樂(lè)趣

  教學(xué)重點(diǎn):靈活運(yùn)用因式分解解決問(wèn)題

  教學(xué)難點(diǎn):靈活運(yùn)用恰當(dāng)?shù)囊蚴椒纸獾姆椒,拓展練?xí)2、3

  教學(xué)過(guò)程:

  一、創(chuàng)設(shè)情景:若a=101,b=99,求a2—b2的值

  利用因式分解往往能將一些復(fù)雜的運(yùn)算簡(jiǎn)單化,那么我們先來(lái)回顧一下什么是因式分解和怎樣來(lái)因式分解。

  二、知識(shí)回顧

  1、因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式積的形式,這種變形叫做把這個(gè)多項(xiàng)式分解因式。

  判斷下列各式哪些是因式分解?(讓學(xué)生先思考,教師提問(wèn)講解,讓學(xué)生明確因式分解的概念以及與乘法的關(guān)系)

 。1)、x2—4y2=(x+2y)(x—2y)因式分解(2)。2x(x—3y)=2x2—6xy整式乘法

 。3)、(5a—1)2=25a2—10a+1整式乘法(4)。x2+4x+4=(x+2)2因式分解

  (5)、(a—3)(a+3)=a2—9整式乘法(6)。m2—4=(m+4)(m—4)因式分解

 。7)、2πR+2πr=2π(R+r)因式分解

  2、規(guī)律總結(jié)(教師講解):分解因式與整式乘法是互逆過(guò)程。

  分解因式要注意以下幾點(diǎn):

 。1)。分解的對(duì)象必須是多項(xiàng)式。

  (2)。分解的結(jié)果一定是幾個(gè)整式的乘積的形式。

 。3)。要分解到不能分解為止。

  3、因式分解的方法

  提取公因式法:—6x2+6xy+3x=—3x(2x—2y—1)公因式的概念;公因式的求法

  公式法:平方差公式:a2—b2=(a+b)(a—b)完全平方公式:a2+2ab+b2=(a+b)2

  4、強(qiáng)化訓(xùn)練

  教學(xué)引入

  師:教材在《四邊形》這一章《引言》里有這樣一句話:把一個(gè)長(zhǎng)方形折疊就可以得到一個(gè)正方形。現(xiàn)在請(qǐng)同學(xué)們拿出一個(gè)長(zhǎng)方形紙條,按動(dòng)畫(huà)所示進(jìn)行折疊處理。

  動(dòng)畫(huà)演示:

  場(chǎng)景一:正方形折疊演示

  師:這就是我們得到的正方形。下面請(qǐng)同學(xué)們拿出三角板(刻度尺)和圓規(guī),我們來(lái)研究正方形的幾何性質(zhì)—邊、角以及對(duì)角線之間的關(guān)系。請(qǐng)大家測(cè)量各邊的長(zhǎng)度、各角的大小、對(duì)角線的長(zhǎng)度以及對(duì)角線交點(diǎn)到各頂點(diǎn)的長(zhǎng)度。

  [學(xué)生活動(dòng):各自測(cè)量。]

  鼓勵(lì)學(xué)生將測(cè)量結(jié)果與鄰近同學(xué)進(jìn)行比較,找出共同點(diǎn)。

  講授新課

  找一兩個(gè)學(xué)生表述其結(jié)論,表述是要注意糾正其語(yǔ)言的`規(guī)范性。

  動(dòng)畫(huà)演示:

  場(chǎng)景二:正方形的性質(zhì)

  師:這些性質(zhì)里那些是矩形的性質(zhì)?

  [學(xué)生活動(dòng):尋找矩形性質(zhì)。]

  動(dòng)畫(huà)演示:

  場(chǎng)景三:矩形的性質(zhì)

  師:同樣在這些性質(zhì)里尋找屬于菱形的性質(zhì)。

  [學(xué)生活動(dòng);尋找菱形性質(zhì)。]

  動(dòng)畫(huà)演示:

  場(chǎng)景四:菱形的性質(zhì)

  師:這說(shuō)明正方形具有矩形和菱形的全部性質(zhì)。

  及時(shí)提出問(wèn)題,引導(dǎo)學(xué)生進(jìn)行思考。

  師:根據(jù)這些性質(zhì),我們能不能給正方形下一個(gè)定義?怎么樣給正方形下一個(gè)準(zhǔn)確的定義?

  [學(xué)生活動(dòng):積極思考,有同學(xué)做躍躍欲試狀。]

  師:請(qǐng)同學(xué)們回想矩形與菱形的定義,可以根據(jù)矩形與菱形的定義類似的給出正方形的定義。

  學(xué)生應(yīng)能夠向出十種左右的定義方式,其余作相應(yīng)鼓勵(lì),把以下三種板書(shū):

  “有一組鄰邊相等的矩形叫做正方形!

  “有一個(gè)角是直角的菱形叫做正方形。”

  “有一個(gè)角是直角且有一組鄰邊相等的平行四邊形叫做正方形!

  [學(xué)生活動(dòng):討論這三個(gè)定義正確不正確?三個(gè)定義之間有什么共同和不同的地方?這出教材中采用的是第三種定義方式。]

  師:根據(jù)定義,我們把平行四邊形、矩形、菱形和正方形它們之間的關(guān)系梳理一下。

  試一試把下列各式因式分解:

 。1)。1—x2=(1+x)(1—x)(2)。4a2+4a+1=(2a+1)2

 。3)。4x2—8x=4x(x—2)(4)。2x2y—6xy2=2xy(x—3y)

  三、例題講解

  例1、分解因式

 。1)—x3y3+x2y+xy(2)6(x—2)+2x(2—x)

 。3)(4)y2+y+

  例2、分解因式

  1、a3—ab2=2、(a—b)(x—y)—(b—a)(x+y)=3、(a+b)2+2(a+b)—15=

  4、—1—2a—a2=5、x2—6x+9—y26、x2—4y2+x+2y=

  例3、分解因式

  1、72—2(13x—7)22、8a2b2—2a4b—8b3

  四、知識(shí)應(yīng)用

  1、(4x2—9y2)÷(2x+3y)2、(a2b—ab2)÷(b—a)

  3、解方程:(1)x2=5x(2)(x—2)2=(2x+1)2

  4、。若x=—3,求20x2—60x的值。5、1993—199能被200整除嗎?還能被哪些整數(shù)整除?

  五、拓展應(yīng)用

  1。計(jì)算:7652×17—2352×17解:7652×17—2352×17=17(7652—2352)=17(765+235)(765—235)

  2、20042+20xx被20xx整除嗎?

  3、若n是整數(shù),證明(2n+1)2—(2n—1)2是8的倍數(shù)。

  五、課堂小結(jié)

  今天你對(duì)因式分解又有哪些新的認(rèn)識(shí)?

因式分解教案 篇4

  第1課時(shí)

  1.使學(xué)生了解因式分解的意義,了解因式分解和整式乘法是整式的兩種相反方向的變形.

  2.讓學(xué)生會(huì)確定多項(xiàng)式中各項(xiàng)的公因式,會(huì)用提公因式法進(jìn)行因式分解.

  自主探索,合作交流.

  1.通過(guò)與因數(shù)分解的類比,讓學(xué)生感悟數(shù)學(xué)中數(shù)與式的共同點(diǎn),體驗(yàn)數(shù)學(xué)的類比思想.

  2.通過(guò)對(duì)因式分解的教學(xué),培養(yǎng)學(xué)生“換元”的意識(shí).

  【重點(diǎn)】 因式分解的概念及提公因式法的應(yīng)用.

  【難點(diǎn)】 正確找出多項(xiàng)式中各項(xiàng)的公因式.

  【教師準(zhǔn)備】 多媒體.

  【學(xué)生準(zhǔn)備】 復(fù)習(xí)有關(guān)乘法分配律的知識(shí).

  導(dǎo)入一:

  【問(wèn)題】 一塊場(chǎng)地由三個(gè)長(zhǎng)方形組成,這些長(zhǎng)方形的長(zhǎng)分別為,,,寬都是,求這塊場(chǎng)地的面積.

  解法1:這塊場(chǎng)地的面積=×+×+×=++==2.

  解法2:這塊場(chǎng)地的面積=×+×+×=×=×4=2.

  從上面的解答過(guò)程看,解法1是按運(yùn)算順序:先算乘法,再算加減法進(jìn)行計(jì)算的,解法2是先逆用乘法分配律,再進(jìn)行計(jì)算的,由此可知解法2要簡(jiǎn)單一些.這個(gè)事實(shí)說(shuō)明,有時(shí)我們需要將多項(xiàng)式化為幾個(gè)整式的積的形式,而提公因式法就是將多項(xiàng)式化為幾個(gè)整式的積的形式的一種方法.

  [設(shè)計(jì)意圖] 讓學(xué)生通過(guò)利用乘法分配律的逆運(yùn)算這一特殊算法,運(yùn)用類比思想自然地過(guò)渡到提公因式法的概念上,從而為提公因式法的掌握打下基礎(chǔ).

  導(dǎo)入二:

  【問(wèn)題】 計(jì)算×15-×9+×2采用什么方法?依據(jù)是什么?

  解法1:原式=-+==5.

  解法2:原式=×(15-9+2)=×8=5.

  解法1是按運(yùn)算順序:先算乘法,再算加減法進(jìn)行計(jì)算的,解法2是先逆用乘法分配律,再進(jìn)行計(jì)算的,由此可知解法2要簡(jiǎn)單一些.這個(gè)事實(shí)說(shuō)明,有時(shí)我們需要將多項(xiàng)式化為幾個(gè)整式的積的形式,而提公因式法就是把多項(xiàng)式化為幾個(gè)整式的積的形式的一種方法.

  [設(shè)計(jì)意圖] 讓學(xué)生通過(guò)利用乘法分配律的逆運(yùn)算這一特殊算法,運(yùn)用類比思想自然地過(guò)渡到提公因式法的概念上,從而為提公因式法的掌握打下基礎(chǔ).

  一、提公因式法分解因式的概念

  思路一

  [過(guò)渡語(yǔ)] 上一節(jié)我們學(xué)習(xí)了什么是因式分解,那么怎樣進(jìn)行因式分解呢?我們來(lái)看下面的問(wèn)題.

  如果一塊場(chǎng)地由三個(gè)長(zhǎng)方形組成,這三個(gè)長(zhǎng)方形的長(zhǎng)分別為a,b,c,寬都是,那么這塊場(chǎng)地的面積為a+b+c或(a+b+c),可以用等號(hào)來(lái)連接,即:a+b+c=(a+b+c).

  大家注意觀察這個(gè)等式,等式左邊的每一項(xiàng)有什么特點(diǎn)?各項(xiàng)之間有什么聯(lián)系?等式右邊的項(xiàng)有什么特點(diǎn)?

  分析:等式左邊的每一項(xiàng)都含有因式,等式右邊是與多項(xiàng)式a+b+c的乘積,從左邊到右邊的過(guò)程是因式分解.

  由于是左邊多項(xiàng)式a+b+c中的各項(xiàng)a,b,c都含有的一個(gè)相同因式,因此叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式.

  由上式可知,把多項(xiàng)式a+b+c寫(xiě)成與多項(xiàng)式a+b+c的乘積的形式,相當(dāng)于把公因式從各項(xiàng)中提出來(lái),作為多項(xiàng)式a+b+c的一個(gè)因式,把從多項(xiàng)式a+b+c的各項(xiàng)中提出后形成的多項(xiàng)式a+b+c,作為多項(xiàng)式a+b+c的另一個(gè)因式.

  總結(jié):如果一個(gè)多項(xiàng)式的各項(xiàng)含有公因式,那么就可以把這個(gè)公因式提出來(lái),從而將多項(xiàng)式化成兩個(gè)因式乘積的形式,這種因式分解的方法叫做提公因式法.

  [設(shè)計(jì)意圖] 通過(guò)實(shí)例的教學(xué),使學(xué)生明白什么是公因式和用提公因式法分解因式.

  思路二

  [過(guò)渡語(yǔ)] 同學(xué)們,我們來(lái)看下面的問(wèn)題,看看同學(xué)們誰(shuí)先做出來(lái).

  多項(xiàng)式 ab+ac中,各項(xiàng)都含有相同的因式嗎?多項(xiàng)式 3x2+x呢?多項(xiàng)式b2+nb-b呢?

  結(jié)論:多項(xiàng)式中各項(xiàng)都含有的相同因式,叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式.

  多項(xiàng)式2x2+6x3中各項(xiàng)的公因式是什么?你能?chē)L試將多項(xiàng)式2x2+6x3因式分解嗎?

  結(jié)論:如果一個(gè)多項(xiàng)式的各項(xiàng)含有公因式,那么就可以把這個(gè)公因式提出來(lái),從而將多項(xiàng)式化成兩個(gè)因式乘積的形式,這種因式分解的方法叫做提公因式法.

  [設(shè)計(jì)意圖] 從讓學(xué)生找出幾個(gè)簡(jiǎn)單多項(xiàng)式的公因式,再到讓學(xué)生嘗試將多項(xiàng)式分解因式,使學(xué)生理解公因式以及提公因式法分解因式的概念.

  二、例題講解

  [過(guò)渡語(yǔ)] 剛剛我們學(xué)習(xí)了因式分解的一種方法,現(xiàn)在我們嘗試下利用這種方法進(jìn)行因式分解吧.

  (教材例1)把下列各式因式分解:

  (1)3x+x3;

  (2)7x3-21x2;

  (3)8a3b2-12ab3c+ab;

  (4)-24x3+12x2-28x.

  〔解析〕 首先要找出各項(xiàng)的公因式,然后再提取出來(lái).要避免提取公因式后,各項(xiàng)中還有公因式,即“沒(méi)提徹底”的現(xiàn)象.

  解:(1)3x+x3=x3+xx2=x(3+x2).

  (2)7x3-21x2=7x2x-7x23=7x2(x-3).

  (3)8a3b2-12ab3c+ab

  =ab8a2b-ab12b2c+ab1

  =ab(8a2b-12b2c+1).

  (4)-24x3+12x2-28x

  =-(24x3-12x2+28x)

  =-(4x6x2-4x3x+4x7)

  =-4x(6x2-3x+7).

  【學(xué)生活動(dòng)】 通過(guò)剛才的練習(xí),大家互相交流,總結(jié)出提取公因式的一般步驟和容易出現(xiàn)的問(wèn)題.

  總結(jié):提取公因式的步驟:(1)找公因式;(2)提公因式.

  容易出現(xiàn)的問(wèn)題(以本題為例):(1)第(2)題中只提出7x作為公因式;(2)第(3)題中最后一項(xiàng)提出ab后,漏掉了“+1”;(3)第(4)題提出“-”號(hào)時(shí),沒(méi)有把后面的因式中的每一項(xiàng)都變號(hào).

  教師提醒:

  (1)各項(xiàng)都含有的字母的最低次冪的.積是公因式的字母部分;

  (2)因式分解后括號(hào)內(nèi)的多項(xiàng)式的項(xiàng)數(shù)與原多項(xiàng)式的項(xiàng)數(shù)相同;

  (3)若多項(xiàng)式的首項(xiàng)為“-”,則先提取“-”號(hào),然后再提取其他公因式;

  (4)將分解因式后的式子再進(jìn)行整式的乘法運(yùn)算,其積應(yīng)與原式相等.

  [設(shè)計(jì)意圖] 經(jīng)歷用提公因式法進(jìn)行因式分解的過(guò)程,在教師的啟發(fā)與指導(dǎo)下,學(xué)生自己歸納出提公因式的步驟及提取公因式時(shí)容易出現(xiàn)的類似問(wèn)題,為提取公因式積累經(jīng)驗(yàn).

  1.提公因式法分解因式的一般形式,如:

  a+b+c=(a+b+c).

  這里的字母a,b,c,可以是一個(gè)系數(shù)不為1的、多字母的、冪指數(shù)大于1的單項(xiàng)式.

  2.提公因式法分解因式的關(guān)鍵在于發(fā)現(xiàn)多項(xiàng)式的公因式.

  3.找公因式的一般步驟:

  (1)若各項(xiàng)系數(shù)是整系數(shù),則取系數(shù)的最大公約數(shù);

  (2)取各項(xiàng)中相同的字母,字母的指數(shù)取最低的;

  (3)所有這些因式的乘積即為公因式.

  1.多項(xiàng)式-6ab2+18a2b2-12a3b2c的公因式是( )

  A.-6ab2cB.-ab2

  C.-6ab2D.-6a3b2c

  解析:根據(jù)確定多項(xiàng)式各項(xiàng)的公因式的方法,可知公因式為-6ab2.故選C.

  2.下列用提公因式法分解因式正確的是( )

  A.12abc-9a2b2=3abc(4-3ab)

  B.3x2-3x+6=3(x2-x+2)

  C.-a2+ab-ac=-a(a-b+c)

  D.x2+5x-=(x2+5x)

  解析:A.12abc-9a2b2=3ab(4c-3ab),錯(cuò)誤;B.3x2-3x+6=3(x2-x+2),錯(cuò)誤;D.x2+5x-=(x2+5x-1),錯(cuò)誤.故選C.

  3.下列多項(xiàng)式中應(yīng)提取的公因式為5a2b的是( )

  A.15a2b-20a2b2

  B.30a2b3-15ab4-10a3b2

  C.10a2b-20a2b3+50a4b

  D.5a2b4-10a3b3+15a4b2

  解析:B.應(yīng)提取公因式5ab2,錯(cuò)誤;C.應(yīng)提取公因式10a2b,錯(cuò)誤;D.應(yīng)提取公因式5a2b2,錯(cuò)誤.故選A.

  4.填空.

  (1)5a3+4a2b-12abc=a( );

  (2)多項(xiàng)式32p2q3-8pq4的公因式是 ;

  (3)3a2-6ab+a= (3a-6b+1);

  (4)因式分解:+n= ;

  (5)-15a2+5a= (3a-1);

  (6)計(jì)算:21×3.14-31×3.14= .

  答案:(1)5a2+4ab-12bc (2)8pq3 (3)a (4)(+n) (5)-5a (6)-31.4

  5.用提公因式法分解因式.

  (1)8ab2-16a3b3;

  (2)-15x-5x2;

  (3)a3b3+a2b2-ab;

  (4)-3a3-6a2+12a.

  解:(1)8ab2(1-2a2b).

  (2)-5x(3+x).

  (3)ab(a2b2+ab-1).

  (4)-3a(a2+2a-4).

  第1課時(shí)

  一、教材作業(yè)

  【必做題】

  教材第96頁(yè)隨堂練習(xí).

  【選做題】

  教材第96頁(yè)習(xí)題4.2.

  二、課后作業(yè)

  【基礎(chǔ)鞏固】

  1.把多項(xiàng)式4a2b+10ab2分解因式時(shí),應(yīng)提取的公因式是 .

  2.(20xx淮安中考)因式分解:x2-3x= .

  3.分解因式:12x3-18x22+24x3=6x .

  【能力提升】

  4.把下列各式因式分解.

  (1)3x2-6x;

  (2)5x23-25x32;

  (3)-43+162-26;

  (4)15x32+5x2-20x23.

  【拓展探究】

  5.分解因式:an+an+2+a2n.

  6.觀察下列各式:12+1=1×2;22+2=2×3;32+3=3×4;….這列式子有什么規(guī)律?請(qǐng)你將猜想到的規(guī)律用含有字母n(n為自然數(shù))的式子表示出來(lái).

  【答案與解析】

  1.2ab

  2.x(x-3)

  3.(2x2-3x+42)

  4.解:(1)3x(x-2). (2)5x22(-5x). (3)-2(22-8+13). (4)5x2(3x+1-42).

  5.解:原式=an1+ana2+anan=an(1+a2+an).

  6.解:由題中給出的幾個(gè)式子可得出規(guī)律:n2+n=n(n+1).

  本節(jié)運(yùn)用類比的思想方法,在新概念的提出、新知識(shí)點(diǎn)的講授過(guò)程中,使學(xué)生易于理解和掌握.如學(xué)生在接受提公因式法時(shí),由提公因數(shù)到提公因式,由整式乘法的逆運(yùn)算到提公因式法的概念,都是利用了類比的數(shù)學(xué)思想,從而使得學(xué)生接受新的概念時(shí)顯得輕松自然,容易理解.

  在小組討論之前,應(yīng)該留給學(xué)生充分的獨(dú)立思考的時(shí)間,不要讓一些思維活躍的學(xué)生的回答代替了其他學(xué)生的思考,掩蓋了其他學(xué)生的疑問(wèn).

  由于因式分解的主要目的是對(duì)多項(xiàng)式進(jìn)行恒等變形,它的作用更多的是應(yīng)用于多項(xiàng)式的計(jì)算和化簡(jiǎn),比如在以后將要學(xué)習(xí)的分式運(yùn)算、解分式方程等中都要用到因式分解的知識(shí),因此應(yīng)該注重因式分解的概念和方法的教學(xué).

  隨堂練習(xí)(教材第96頁(yè))

  解:(1)(a+b). (2)52(+4). (3)3x(2-3). (4)ab(a-5). (5)22(2-3). (6)b(a2-5a+9). (7)-a(a-b+c). (8)-2x(x2-2x+3).

  習(xí)題4.2(教材第96頁(yè))

  1.解:(1)2x2-4x=2x(x-2). (2)82n+2n=2n4+2n1=2n(4+1). (3)a2x2-ax2=axax-ax=ax(ax-). (4)3x3-3x2+9x=3x(x2-x+3). (5)-24x2-12x2-283=-(24x2+12x2+283)=-4(6x2+3x+72). (6)-4a3b3+6a2b-2ab=-(4a3b3-6a2b+2ab)=-2ab(2a2b2-3a+1). (7)-2x2-12x2+8x3=-(2x2+12x2-8x3)=-2x(x+62-43). (8)-3a3+6a2-12a=-(3a3-6a2+12a)=-3a(a2-2a+4).

  2.解:(1)++=(++)=3.14×(202+162+122)=2512. (2)∵xz-z=z(x-),∴原式=×(17.8-28.8)=×(-11)=-7. (3)∵ab=7,a+b=6,∴a2b+ab2=ab(a+b)=7×6=42.

  3.解:(1)不正確,因?yàn)樘崛〉墓蚴讲粚?duì),應(yīng)為n(2n--1). (2)不正確,因?yàn)樘崛」蚴?b后,第三項(xiàng)沒(méi)有變號(hào),應(yīng)為-b(ab-2a+3). (3)正確. (4)不正確,因?yàn)樽詈蟮慕Y(jié)果不是乘積的形式,應(yīng)為(a-2)(a+1).

  提公因式法是本章的第2小節(jié),占兩個(gè)課時(shí),這是第一課時(shí),它主要讓學(xué)生經(jīng)歷從乘法分配律的逆運(yùn)算到提公因式的過(guò)程,讓學(xué)生體會(huì)數(shù)學(xué)中的一種主要思想——類比思想.運(yùn)用類比的思想方法,在新概念的提出、新知識(shí)點(diǎn)的講授過(guò)程中,可以使學(xué)生易于理解和掌握.如學(xué)生在接受提公因式法時(shí),由整式乘法的逆運(yùn)算到提公因式法的概念,就利用了類比的數(shù)學(xué)思想,從而使得學(xué)生接受新的概念時(shí)顯得輕松自然,容易理解,進(jìn)而使學(xué)生進(jìn)一步理解因式分解與整式乘法運(yùn)算之間的互逆關(guān)系.

  已知方程組求7(x-3)2-2(3-x)3的值.

  〔解析〕 將代數(shù)式分解因式,產(chǎn)生x-3與2x+兩個(gè)因式,再根據(jù)方程組整體代入,使計(jì)算簡(jiǎn)便.

  解:7(x-3)2-2(3-x)3

  =(x-3)2[7+2(x-3)]

  =(x-3)2(7+2x-6)

  =(x-3)2(2x+).

  由方程組可得原式=12×6=6.

因式分解教案 篇5

  知識(shí)點(diǎn):

  因式分解定義,提取公因式、應(yīng)用公式法、分組分解法、二次三項(xiàng)式的因式(十字相乘法、求根)、因式分解一般步驟。

  教學(xué)目標(biāo):

  理解因式分解的概念,掌握提取公因式法、公式法、分組分解法等因式分解方法,掌握利用二次方程求根公式分解二次二項(xiàng)式的方法,能把簡(jiǎn)單多項(xiàng)式分解因式。

  考查重難點(diǎn)與常見(jiàn)題型:

  考查因式分解能力,在中考試題中,因式分解出現(xiàn)的頻率很高。重點(diǎn)考查的分式提取公因式、應(yīng)用公式法、分組分解法及它們的綜合運(yùn)用。習(xí)題類型以填空題為多,也有選擇題和解答題。

  教學(xué)過(guò)程:

  因式分解知識(shí)點(diǎn)

  多項(xiàng)式的因式分解,就是把一個(gè)多項(xiàng)式化為幾個(gè)整式的積。分解因式要進(jìn)行到每一個(gè)因式都不能再分解為止。分解因式的常用方法有:

 。1)提公因式法

  如多項(xiàng)式

  其中m叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式, m既可以是一個(gè)單項(xiàng)式,也可以是一個(gè)多項(xiàng)式。

  (2)運(yùn)用公式法,即用

  寫(xiě)出結(jié)果。

 。3)十字相乘法

  對(duì)于二次項(xiàng)系數(shù)為l的.二次三項(xiàng)式 尋找滿足ab=q,a+b=p的a,b,如有,則對(duì)于一般的二次三項(xiàng)式尋找滿足

  a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,則

  (4)分組分解法:把各項(xiàng)適當(dāng)分組,先使分解因式能分組進(jìn)行,再使分解因式在各組之間進(jìn)行。

  分組時(shí)要用到添括號(hào):括號(hào)前面是“+”號(hào),括到括號(hào)里的各項(xiàng)都不變符號(hào);括號(hào)前面是“-”號(hào),括到括號(hào)里的各項(xiàng)都改變符號(hào)。

 。5)求根公式法:如果有兩個(gè)根X1,X2,那么

  2、教學(xué)實(shí)例:學(xué)案示例

  3、課堂練習(xí):學(xué)案作業(yè)

  4、課堂:

  5、板書(shū):

  6、課堂作業(yè):學(xué)案作業(yè)

  7、教學(xué)反思:

因式分解教案 篇6

 。ㄒ唬學(xué)習(xí)目標(biāo)

  1、會(huì)用因式分解進(jìn)行簡(jiǎn)單的多項(xiàng)式除法

  2、會(huì)用因式分解解簡(jiǎn)單的方程

  (二)學(xué)習(xí)重難點(diǎn)重點(diǎn):因式分解在多項(xiàng)式除法和解方程中兩方面的應(yīng)用。

  難點(diǎn):應(yīng)用因式分解解方程涉及到的較多的推理過(guò)程是本節(jié)課的難點(diǎn)。

 。ㄈ教學(xué)過(guò)程設(shè)計(jì)

  看一看

  1.應(yīng)用因式分解進(jìn)行多項(xiàng)式除法.多項(xiàng)式除以多項(xiàng)式的一般步驟:

 、賍_______________②__________

  2.應(yīng)用因式分解解簡(jiǎn)單的一元二次方程.

  依據(jù)__________,一般步驟:__________

  做一做

  1.計(jì)算:

  (1)(-a2b2+16)÷(4-ab);

  (2)(18x2-12xy+2y2)÷(3x-y).

  2.解下列方程:

  (1)3x2+5x=0;

  (2)9x2=(x-2)2;

  (3)x2-x+=0.

  3.完成課后練習(xí)題

  想一想

  你還有哪些地方不是很懂?請(qǐng)寫(xiě)出來(lái)。

  ____________________________________

  (四)預(yù)習(xí)檢測(cè)

  1.計(jì)算:

  2.先請(qǐng)同學(xué)們思考、討論以下問(wèn)題:

  (1)如果A×5=0,那么A的`值

  (2)如果A×0=0,那么A的值

  (3)如果AB=0,下列結(jié)論中哪個(gè)正確( )

  ①A、B同時(shí)都為零,即A=0,

  且B=0;

 、贏、B中至少有一個(gè)為零,即A=0,或B=0;

  (五)應(yīng)用探究

  1.解下列方程

  2.化簡(jiǎn)求值:已知x-y=-3,-x+3y=2,求代數(shù)式x2-4xy+3y2的值

  (六)拓展提高:

  解方程:

  1、(x2+4)2-16x2=0

  2、已知a、b、c為三角形的三邊,試判斷a2-2ab+b2-c2大于零?小于零?等于零?

  (七)堂堂清練習(xí)

  1.計(jì)算

  2.解下列方程

  ①7x2+2x=0

 、趚2+2x+1=0

  ③x2=(2x-5)2

 、躼2+3x=4x

【因式分解教案】相關(guān)文章:

因式分解教案03-28

因式分解教案15篇04-02

精選因式分解教案4篇01-26

精選因式分解教案3篇03-09

關(guān)于因式分解教案3篇03-15

因式分解教案模板集錦八篇04-06

因式分解教案集錦9篇04-03

關(guān)于因式分解教案匯編十篇04-12

因式分解教案集錦七篇04-15