精選二次根式教案4篇
作為一位不辭辛勞的人民教師,通常需要準備好一份教案,編寫教案助于積累教學經(jīng)驗,不斷提高教學質(zhì)量。那么應當如何寫教案呢?以下是小編幫大家整理的二次根式教案4篇,歡迎大家分享。
二次根式教案 篇1
教學目標
課標要求:學生要學會學習、自主學習,要為學生終生學習打下堅實的基礎,根據(jù)教學大綱和新課標的要求,根據(jù)教材內(nèi)容和學生的特點我確定了本節(jié)課的教學目標 1、了解二次根式的概念 2、了解二次根式的基本性質(zhì),經(jīng)歷觀察、比較、總結(jié)二次根式的基本性質(zhì)的過程,發(fā)展學生的歸納概括能力。 3、通過對二次根式的概念和性質(zhì)的探究,提高數(shù)學探究能力和歸納表達能力。 4、學生經(jīng)歷觀察、比較、總結(jié)和應用等數(shù)學活動,感受數(shù)學活動充滿了探索性與創(chuàng)造性,體驗發(fā)現(xiàn)的樂趣,并提高應用的意識。
教學重點:二次根式的概念和基本性質(zhì)
教學難點:二次根式的基本性質(zhì)的靈活運用
教法和學法
教學活動的本質(zhì)是一種合作,一種交流。學生是數(shù)學學習的主人,教師是數(shù)學學習的組織者、引導者與合作者,本節(jié)課主要采用自主學習,合作探究,引領提升的方式展開教學。依據(jù)學生的年齡特點和已有的知識基礎,本節(jié)課注重加強知識間的縱向聯(lián)系,,拓展學生探索的空間,體現(xiàn)由具體到抽象的認識過程。為了為后續(xù)學習打下堅實的基礎,例如在“銳角三角函數(shù)”一章中,會遇到很多實際問題,在解決實際問題的過程中,要遇到將二次根式化成最簡二次根式等,本課適當加強練習,讓學生養(yǎng)成聯(lián)系和發(fā)展的`觀點學習數(shù)學的習慣。
教學過程
活動一:根據(jù)學生已有知識探究二次根式的概念 1.探究二次根式概念 由四個實際問題(三個幾何問題,一個物理問題)入手,設置問題情境,讓學生感受到研究二次根式來源于生活又服務于生活。 思考:用帶有根號的式子填空,看看寫出的結(jié)果有什么特點? (1)要做一個兩條直角邊的長分別為7cm和4cm的三角尺,斜邊的長應為 cm
(2)面積為S的正方形的邊長為
(3)要修建一個面積為6.28m2的圓形噴水池,它的半徑為m(∏取3.14)
(4)一個物體從高處自由落下,落到地面所用的時間t(單位:s)與開始落下時的高度h(單位:m)滿足關系h=5t2.如果用含有h的式子表示t,則t= 學生發(fā)現(xiàn)所填結(jié)果都表示一個數(shù)的算術平方根,教師引導學生用一個式子表示這些有共同特點的式子。學生表示為,此時教師啟發(fā)學生回憶已學平方根的性質(zhì)讓學生總結(jié)出a這一條件。在此基礎上總結(jié)出二次根式的概念。 2.例題評析 例1:哪些為二次根式? 練習:x取何值時下列各式有意義,通過4小題的訓練,讓學生體會二次根式概念的初步應用。加深對二次根式定義的理解,并注重新舊知識間的聯(lián)系,用轉(zhuǎn)化的思想解決問題,總結(jié)出解題規(guī)律:求未知數(shù)的取值范圍即轉(zhuǎn)化為①被開方數(shù)大于等于0②分母不為0列不等式或不等式組解決問題。
活動二:探究二次根式的性質(zhì)1 1.探究(a)與0的關系 學生分類討論探究出:(a)是一個非負數(shù),此時歸納出二次根式的第一個性質(zhì):雙重非負性。培養(yǎng)學生的分類討論和概括能力。例2:,則變式:,
活動三:探究二次根式的性質(zhì)2 探究()2=a(a)由課本具體的正數(shù)和零入手來研究二次根式的第二個性質(zhì),首先讓學生通過探究活動感受這條結(jié)論,然后再從算術平方根的意義出發(fā),結(jié)合具體例子對這條結(jié)論進行分析,引導學生由具體到抽象,得出一般的結(jié)論,并發(fā)現(xiàn)開平方運算與平方運算的關系,培養(yǎng)學生由特殊到一般的思維方式,提高歸納、總結(jié)的能力。前兩題學生口述教師板書,后面的兩題由學生板演引導學生分析(2)(4)實質(zhì)是積的乘方和分式的乘方 拓展:反之(a)如 為后面的化最簡二次根式(簡單的分母有理化)做好鋪墊。 例4:在實數(shù)范圍內(nèi)分解因式
活動四:探究二次根式的性質(zhì)3 3.探究 在活動三的基礎上出示課本第4頁的探究: 引導學生比較活動三與活動四探究中兩組題目的不同之處,活動三中的題目是對非負數(shù)先進行開平方運算,再進行平方運算;而活動四中的題目正好相反,是先進行平方運算,再進行開平方運算。再次由特殊到一般的讓學生歸納出二次根式的又一個性質(zhì)。培養(yǎng)學生觀察、對比的能力和意識。 此時引導學生談一談對()2和的聯(lián)系和區(qū)別 相同點:①都有平方和開平方運算 ②運算結(jié)果都是非負數(shù) ③僅當a時,()2= 不同點:①從形式和運算順序看:()2先開方后平方,先平方后開方 ②從a的取值范圍看:()2(a),(a為任意數(shù)) ③從運算結(jié)果看:()2=a(a),(a為任意數(shù)
二次根式教案 篇2
一、內(nèi)容和內(nèi)容解析
1.內(nèi)容
二次根式的性質(zhì)。
2.內(nèi)容解析
本節(jié)教材是在學生學習二次根式概念的基礎上,結(jié)合二次根式的概念和算術平方根的概念,通過觀察、歸納和思考得到二次根式的兩個基本性質(zhì).
對于二次根式的性質(zhì),教材沒有直接從算術平方根的意義得到,而是考慮學生的年齡特征,先通過 “探究”欄目中給出四個具體問題,讓學生學生根據(jù)算術平方根的意義,就具體數(shù)字進行分析得出結(jié)果,再分析這些結(jié)果的共同特征,由特殊到一般地歸納出結(jié)論.基于以上分析,確定本節(jié)課的教學重點為:理解二次根式的性質(zhì).
二、目標和目標解析
1.教學目標
。1)經(jīng)歷探索二次根式的性質(zhì)的過程,并理解其意義;
。2)會運用二次根式的性質(zhì)進行二次根式的化簡;
(3)了解代數(shù)式的概念.
2.目標解析
。1)學生能根據(jù)具體數(shù)字分析和算術平方根的意義,由特殊到一般地歸納出二次根式的性質(zhì),會用符號表述這一性質(zhì);
。2)學生能靈活運用二次根式的性質(zhì)進行二次根式的化簡;
(3)學生能從已學過的各種式子中,體會其共同特點,得出代數(shù)式的概念.
三、教學問題診斷分析
二次根式的性質(zhì)是二次根式化簡和運算的重要基礎.學生根據(jù)二次根式的概念和算術平方根的意義,由特殊到一般地得出二次根式的性質(zhì)后,重在能靈活運用二次根式的性質(zhì)進行二次根式的化簡和解決一些綜合性較強的問題.由于學生初次學習二次根式的性質(zhì),對二次根式性質(zhì)的靈活運用存在一定的困難,突破這一難點需要教師精心設計好每一道習題,讓學生在練習中進一步掌握二次根式的性質(zhì),培養(yǎng)其靈活運用的能力.
本節(jié)課的教學難點為:二次根式性質(zhì)的靈活運用.
四、教學過程設計
1.探究性質(zhì)1
問題1 你能解釋下列式子的含義嗎?
師生活動:教師引導學生說出每一個式子的含義.
【設計意圖】讓學生初步感知,這些式子都表示一個非負數(shù)的算術平方根的平方.
問題2 根據(jù)算術平方根的意義填空,并說出得到結(jié)論的依據(jù).
師生活動 學生獨立完成填空后,讓學生展示其思維過程,說出得到結(jié)論的依據(jù).
【設計意圖】學生通過計算或根據(jù)算術平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)1作鋪墊.
問題3 從以上的結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個式子表示這個規(guī)律嗎?
師生活動:引導學生歸納得出二次根式的性質(zhì): ( ≥0).
【設計意圖】讓學生經(jīng)歷從特殊到一般的過程,概括出二次根式的性質(zhì)1,培養(yǎng)學生抽象概括的能力.
例2 計算
。1) ;(2) .
師生活動:學生獨立完成,集體訂正.
【設計意圖】鞏固二次根式的性質(zhì)1,學會靈活運用.
2.探究性質(zhì)2
問題4 你能解釋下列式子的含義嗎?
師生活動:教師引導學生說出每一個式子的含義.
【設計意圖】讓學生初步感知,這些式子都表示一個數(shù)的平方的算術平方根.
問題5 根據(jù)算術平方根的意義填空,并說出得到結(jié)論的.依據(jù).
師生活動 學生獨立完成填空后,讓學生展示其思維過程,說出得到結(jié)論的依據(jù).
【設計意圖】學生通過計算或根據(jù)算術平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)2作鋪墊.
問題6 從以上的結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個式子表示這個規(guī)律嗎?
師生活動:引導學生歸納得出二次根式的性質(zhì): ( ≥0)
【設計意圖】讓學生經(jīng)歷從特殊到一般的過程,概括出二次根式的性質(zhì)2,培養(yǎng)學生抽象概括的能力.
例3 計算
。1) ;(2) .
師生活動:學生獨立完成,集體訂正.
【設計意圖】鞏固二次根式的性質(zhì)2,學會靈活運用.
3.歸納代數(shù)式的概念
問題7 回顧我們學過的式子,如, ( ≥0),這些式子有哪些共同特征?
師生活動:學生概括式子的共同特征,得出代數(shù)式的概念.
【設計意圖】學生通過觀察式子的共同特征,形成代數(shù)式的概念,培養(yǎng)學生的概括能力.
4.綜合運用
(1)算一算:
【設計意圖】設計有一定綜合性的題目,考查學生的靈活運用的能力,第(2)、(3)、(4)小題要特別注意結(jié)果的符號.
。2)想一想: 中, 的取值范圍是什么?當 ≥0時, 等于多少?當 時, 又等于多少?
【設計意圖】通過此問題的設計,加深學生對 的理解,開闊學生的視野,訓練學生的思維.
。3)談一談你對 與 的認識.
【設計意圖】加深學生對二次根式性質(zhì)的理解.
5.總結(jié)反思
。1)你知道了二次根式的哪些性質(zhì)?
(2)運用二次根式性質(zhì)進行化簡需要注意什么?
。3)請談談發(fā)現(xiàn)二次根式性質(zhì)的思考過程?
。4)想一想,到現(xiàn)在為止,你學習了哪幾類字母表示數(shù)得到的式子?說說你對代數(shù)式的認識.
6.布置作業(yè):教科書習題16.1第2,4題.
五、目標檢測設計
1. ; ; .
【設計意圖】考查對二次根式性質(zhì)的理解.
2.下列運算正確的是( )
A. B. C. D.
【設計意圖】考查學生運用二次根式的性質(zhì)進行化簡的能力.
3.若 ,則 的取值范圍是 .
【設計意圖】考查學生對一個數(shù)非負數(shù)的算術平方根的理解.
4.計算: .
【設計意圖】考查二次根式性質(zhì)的靈活運用.
二次根式教案 篇3
活動1、提出問題
一個運動場要修兩塊長方形草坪,第一塊草坪的長是10米,寬是米,第二塊草坪的長是20米,寬也是米。你能告訴運動場的負責人要準備多少面積的草皮嗎?
問題:10+20是什么運算?
活動2、探究活動
下列3個小題怎樣計算?
問題:1)-還能繼續(xù)往下合并嗎?
2)看來二次根式有的`能合并,有的不能合并,通過對以上幾個題的觀察,你能說說什么樣的二次根式能合并,什么樣的不能合并嗎?
二次根式加減時,先將二次根式化簡成最簡二次根式后,再將被開方數(shù)相同的進行合并。
活動3
練習1指出下列每組的二次根式中,哪些是可以合并的二次根式?(字母均為正數(shù))
創(chuàng)設問題情景,引起學生思考。
學生回答:這個運動場要準備(10+20)平方米的草皮。
教師提問:學生思考并回答教師出示課題并說明今天我們就共同來研究該如何進行二次根式的加減法運算。
我們可以利用已學知識或已有經(jīng)驗來分組討論、交流,看看+到底等于什么?小組展示討論結(jié)果。
教師引導驗證:
、僭O=,類比合并同類項或面積法;
、趯W生思考,得出先化簡,再合并的解題思路
、巯然,再合并
學生觀察并歸納:二次根式化為最簡二次根式后,被開方數(shù)相同的能合并。
教師巡視、指導,學生完成、交流,師生評價。
提醒學生注意先化簡成最簡二次根式后再判斷。
二次根式教案 篇4
第十六章 二次根式
代數(shù)式用運算符號把數(shù)和表示數(shù)的字母連接起來的式子叫代數(shù)式①式子中不能出現(xiàn)“=,≠,≥,≤,<,>”;②單個的數(shù)字或單個的字母也是代數(shù)式
5.5(解析:這類題保證被開方數(shù)是最小的完全平方數(shù)即可得出結(jié)論.20=22×5,所以正整數(shù)的最小值為5.)
6.(1)(x+)(x-) (2)n(n+)2(n-)2(解析:關鍵是逆用()2=a(a≥0)將3變成()2.(1)x2-3=(x+)(x-).(2)n5-6n3+9n=n(n4-6n2+9)=n(n2-3)2=n(n+)2(n-)2.)
7.解:(1) . (2)寬:3 ;長:5 .
8.解:(1) =. (2)(3)2=32×()2=18. (3)=(-2)2×=. (4)-=-=-3π. (5) = =.
9.解:原式=-=-.∵x=6,∴x+1>0,x-8<0.∴原式=x+1-=x+1+x-8=2x-7=12-7=5.
10.解析:在利用=|a|=化簡二次根式時,當根號內(nèi)的因式移到根號外面時,一定要注意原來根號里面的符號,這也是化簡時最容易出錯的地方.
解:乙的解答是錯誤的.因為當a=時,=5,a-<0,所以 ≠a-,而應是 =-a.
本節(jié)課通過“觀察——歸納——運用”的模式,讓學生對知識的形成與掌握變得簡單起來,將一個一個知識點落實到位,適當增加了拓展性的練習,層層遞進,使不同的學生得到了不同的發(fā)展和提高.
在探究二次根式的性質(zhì)時,通過“提問——追問——討論”的形式展開,保證了活動有一定的針對性,但是學生發(fā)揮主體作用不夠.
在探究完成二次根式的性質(zhì)1后,總結(jié)學習方法,再放手讓學生自主探究二次根式的性質(zhì)2.既可以提高學習效率,又可以培養(yǎng)學生自學能力.
練習(教材第4頁)
1.解:(1)()2=3. (2)(3)2=32×()2=9×2=18.
2.解:(1)=0.3. (2) =. (3)-=-π. (4)=10-1=.
習題16.1(教材第5頁)
1.解:(1)欲使有意義,則必有a+2≥0,∴a≥-2,∴當a≥-2時,有意義. (2)欲使有意義,則必有3-a≥0,∴a≤3,∴當a≤3時,有意義. (3)欲使有意義,則必有5a≥0,∴a≥0,∴當a≥0時,有意義. (4)欲使有意義,則必有2a+1≥0,∴a≥-,∴當a≥-時,有意義.
2.解:(1)()2=5. (2)(-)2=()2=0.2. (3)=. (4)(5)2=52×()2=25×5=125. (5)==10. (6)=72×=49×=14. (7) =. (8)- =- =-.
3.解:(1)設圓的半徑為R,由圓的面積公式得S=πR2,所以R2=,所以R=± .因為圓的半徑不能是負數(shù),所以R=-不符合題意,舍去,故R= ,即面積為S的圓的半徑為 . (2)設較短的.邊長為2x,則它的鄰邊長為3x.由長方形的面積公式得2x3x=S,所以x=±,因為x=-不符合題意,舍去,所以x=,所以2x=2=,3x=3=,即這個長方形的相鄰兩邊的長分別為和.
4.解:(1)32. (2)()2. (3)()2. (4)0.52. (5). (6)02.
5.解:由題意可知πr2=π22+π32,∴r2=13,∴r=±.∵r=-不符合題意,舍去,∴r=,即r的值是.
6.解:設AB=x,則AB邊上的高為4x,由題意,得x4x=12,則x2=6,∴x=±.∵x=-不符合題意,舍去,∴x=.故AB的長為.
7.解:(1)∵x2+1>0恒成立,∴無論x取任何實數(shù),都有意義. (2)∵(x-1)2≥0恒成立,∴無論x取任何實數(shù),都有意義. (3)∵即x>0,∴當x>0時, 在實數(shù)范圍內(nèi)有意義. (4)∵即x>-1,∴當x>-1時,在實數(shù)范圍內(nèi)有意義.
8.解:設h=t2, 則由題意,得20=×22,解得=5,∴h=5t2,∴t= (負值已舍去).當h=10時,t= =,當h=25時,t= =.故當h=10和h=25時,小球落地所用的時間分別為 s和 s.
9.解:(1)由題意知18-n≥0且為整數(shù),則n≤18,n為自然數(shù)且為整數(shù),∴符合條件的n的所有可能的值為2,9,14,17,18. (2)∵24n≥0且是整數(shù),n為正整數(shù),∴符合條件的n的最小值是6.
10.解:V=πr2×10,r= (負值已舍去),當V=5π時, r= =,當V=10π時,r= =1,當V=20π時,r= =.
如圖所示,根據(jù)實數(shù)a,b在數(shù)軸上的位置,化簡:+.
〔解析〕 根據(jù)數(shù)軸可得出a+b與a-b的正負情況,從而可將二次根式化簡.
解:由數(shù)軸可得:a+b<0,a-b>0,
∴+=|a-b|+|a+b|=a-b-(a+b)=-2b.
[解題策略] 結(jié)合數(shù)軸得出字母的取值范圍,再化簡二次根式,此題體現(xiàn)了數(shù)形結(jié)合的思想.
已知a,b,c為三角形的三條邊,則+= .
〔解析〕 根據(jù)三角形三邊的關系,先判斷a+b-c與b-a-c的符號,再去根號、絕對值符號并化簡.因為a,b,c為三角形的三條邊,所以a+b-c>0,b-a-c<0,所以原式=(a+b-c)+[-(b-a-c)]=a+b-c-b+a+c=2a.故填2a.
[解題策略] 此類化簡問題要特別注意符號問題.
化簡:.
〔解析〕 題中并沒有明確字母x的取值范圍,需要分x≥3和x<3兩種情況考慮.
解:當x≥3時,=|x-3|=x-3;
當x<3時,=|x-3|=-(x-3)=3-x.
[解題策略] 化簡時,先將它化成|a|,再根據(jù)絕對值的意義分情況進行討論.
5
O
M
【二次根式教案】相關文章:
二次根式教案四篇07-17
【精選】二次根式教案三篇08-05
精選二次根式教案3篇08-08
二次根式教案合集7篇04-10
二次根式教案匯總7篇04-04
二次根式教案匯編六篇04-04
有關二次根式教案三篇02-03
二次根式教案匯總九篇04-07
二次根式教案范文10篇04-05