- 《反比例的意義》教學反思 推薦度:
- 反比例意義教學反思 推薦度:
- 反比例意義教學反思 推薦度:
- 相關(guān)推薦
反比例意義教學反思合集15篇
身為一名剛到崗的教師,課堂教學是我們的工作之一,借助教學反思可以快速提升我們的教學能力,快來參考教學反思是怎么寫的吧!下面是小編幫大家整理的反比例意義教學反思,希望能夠幫助到大家。
反比例意義教學反思1
一、教材分析
反比例函數(shù)是初中階段所要學習的三種函數(shù)中的一種,是一類比較簡單但很重要的函數(shù),現(xiàn)實生活中充滿了反比例函數(shù)的例子。因此反比例函數(shù)的概念與意義的教學是基礎(chǔ)。
二、學情分析
由于之前學習過函數(shù),學生對函數(shù)概念已經(jīng)有了一定的認識能力,另外在前一章我們學習過分式的知識,因此為本節(jié)課的教學奠定的一定的基礎(chǔ)。
三、教學目標
知識目標:理解反比例函數(shù)意義;能夠根據(jù)已知條件確定反比例函數(shù)的表達式.
解決問題:能從實際問題中抽象出反比例函數(shù)并確定其表達式. 情感態(tài)度:讓學生經(jīng)歷從實際問題中抽象出反比例函數(shù)模型的過程,體會反比例函數(shù)來源于實際.
四、教學重難點
重點:理解反比例函數(shù)意義,確定反比例函數(shù)的表達式.
難點:反比例函數(shù)表達式的確立.
五、教學過程
。1)京滬線鐵路全程為1463km,某次列車的平均速度v(單位:km/h)隨此次列車的全程運行時間t(單位:h)的變化而變化;
。2)某住宅小區(qū)要種植一個面積1000m2的矩形草坪,草坪的長y(單
位:m)隨寬x(單位:m)的變化而變化。
請同學們寫出上述函數(shù)的表達式
14631000(2)y= tx
k可知:形如y= (k為常數(shù),k≠0)的函數(shù)稱為反比例函數(shù),其中xx(1)v=
是自變量,y是函數(shù)。
此過程的目的在于讓學生從實際問題中抽象出反比例函數(shù)模型的過程,體會反比例函數(shù)來源于實際. 由于是分式,當x=0時,分式無意義,所以x≠0。
當y= 中k=0時,y=0,函數(shù)y是一個常數(shù),通常我們把這樣的函數(shù)稱為常函數(shù)。此時y就不是反比例函數(shù)了。
舉例:下列屬于反比例函數(shù)的'是
。1)y= (2)xy=10 (3)y=k-1x (4)y= -
此過程的目的是通過分析與練習讓學生更加了解反比例函數(shù)的概念 問已知y與x成反比例,y與x-1成反比例,y+1與x成反比例,y+1與x-1成反比例,將如何設(shè)其解析式(函數(shù)關(guān)系式)
已知y與x成反比例,則可設(shè)y與x的函數(shù)關(guān)系式為y=
k x?1
k已知y+1與x成反比例,則可設(shè)y與x的函數(shù)關(guān)系式為y+1= xkxkxkxkx2x已知y與x-1成反比例,則可設(shè)y與x的函數(shù)關(guān)系式為y=
已知y+1與x-1成反比例,則可設(shè)y與x的函數(shù)關(guān)系式為y+1= k x?1此過程的目的是為了讓學生更深刻的了解反比例函數(shù)的概念,為以后在求函數(shù)解析式做好鋪墊。
例:已知y與x2反比例,并且當x=3時y=4
。1)求出y和x之間的函數(shù)解析式
。2)求當x=1.5時y的值
解析:因為y與x2反比例,所以設(shè)y?k,只要將k求出即可得到y(tǒng)x2
和x之間的函數(shù)解析式。之后引導學生書寫過程。能從實際問題中抽象出反比例函數(shù)并確定其表達式最后學生練習并布置作業(yè)
通過此環(huán)節(jié),加深對本節(jié)課所內(nèi)容的認識,以達到鞏固的目的。
六、評價與反思
本節(jié)課是在學生現(xiàn)有的認識基礎(chǔ)上進行講解,便于學生理解反比例函數(shù)的概念。而本節(jié)課的重點在于理解反比例函數(shù)意義,確定反比例函數(shù)的表達式.應該對這一方面的內(nèi)容多練習鞏固。
反比例意義教學反思2
學習了正反比例的意義后,學生接受的效果并不理想,特別是離開具體數(shù)據(jù)根據(jù)數(shù)量關(guān)系判斷成什么比例時問題比較大,一部分同學對于這兩種比例關(guān)系的意義比較模糊。為了幫助學生理解辨析這兩種比例關(guān)系,我利用了一節(jié)課時間進行了對比整理,讓學生在比較的過程中發(fā)現(xiàn)兩種比例關(guān)系的異同后,總結(jié)出判斷的三個步驟:第一步先找相關(guān)聯(lián)的兩個量和一定的量;第二步列出求一定量的`數(shù)量關(guān)系式;第三步根據(jù)正反比例的關(guān)系式對照判斷是比值一定還是乘積一定,從而確定成什么比例關(guān)系。學生根據(jù)這三個步驟做有關(guān)的判斷練習時,思路清晰了,也找到了一定的規(guī)律和竅門,不再是一頭霧水了,逐漸地錯誤減少了。
看來在一些概念性的教學中必要的點撥引導是不能少的,這時就需要充分發(fā)揮教師的主導作用,學生的理解能力是在日積月累的過程中培養(yǎng)起來的,教給學生一定解題的技巧和方法能提高教學效率。
反比例意義教學反思3
我利用了一節(jié)課時間進行了對比整理,讓學生在比較的過程中發(fā)現(xiàn)兩種比例關(guān)系的異同后,總結(jié)出判斷的三個步驟:
第一步先找相關(guān)聯(lián)的.兩個量和一定的量;
第二步列出求一定量的數(shù)量關(guān)系式;
第三步根據(jù)正反比例的關(guān)系式對照判斷是比值一定還是乘積一定,從而確定成什么比例關(guān)系。學生根據(jù)這三個步驟做有關(guān)的判斷練習時,思路清晰了,也找到了一定的規(guī)律和竅門
看來在一些概念性的教學中必要的點撥引導是不能少的,這時就需要充分發(fā)揮教師的主導作用,學生的理解能力是在日積月累的過程中培養(yǎng)起來的,教給學生一定解題的技巧和方法能提高教學效率。
反比例意義教學反思4
《數(shù)學課程標準》中指出:“學生的數(shù)學學習內(nèi)容應當是現(xiàn)實的、有意義的、富有挑戰(zhàn)性的,這些內(nèi)容要有利于學生主動地進行觀察、實驗、猜測、驗證、推理與交流等數(shù)學活動!币虼松贤赀@節(jié)課我比較滿意的地方有:
一、猜想導課,激發(fā)探究愿望
猜想是一種創(chuàng)造性思維。牛頓說:“沒有大膽的猜想,就沒有偉大的發(fā)明和發(fā)現(xiàn)!闭n一開始我就引導學生猜測兩種量還可能成什么比例,學生很自然想到反比例,然后我問學生想學會反比例的哪些知識,再讓學生猜測這些知識,對反比例的意義展開合理的猜想。這一環(huán)節(jié)設(shè)計巧妙,符合學生的認知規(guī)律,同時也激起了學生探究問題的強烈愿望。
二、創(chuàng)造性地使用教材
這節(jié)課教材上的`例題是由例一變化來的,教學正比例時,我也是自己重新編寫了例題,因為我感覺利用圓柱的體積、底面積和高這三種量認識正、反比例對學生來說有些抽象,不接近生活。因此,我借鑒了學生讀《安徒生童話選》這一事例,學生感覺這就是發(fā)生在學生身上的事,親切易懂,并且愿意在這個表格中找尋規(guī)律,進而總結(jié)出反比例的意義。
反比例意義教學反思5
今天上午的第二節(jié)課,我試講了《正、反比例的意義》。這節(jié)課上完以后,給我感觸最深的是第一層次(認識量、變量,建立兩種相關(guān)聯(lián)的量這個概念)的教學。這個環(huán)節(jié)處理得很不好(具體的下面介紹),學生沒有很好地建立“兩種相關(guān)聯(lián)的量”這個概念,也就影響到了對正、反比例意義的理解。
我自己很清楚,不管怎么說,“兩種相關(guān)聯(lián)的量”這個概念教學的`失誤是我造成的,后來我明白了,如果在學生回答了“路程和時間這兩種量在變化”后,我順勢說一句“讀一讀這些數(shù)據(jù)”,隨后再接著問:“誰隨著誰變呀?”這樣就會很順暢地得出:路程隨著時間的變化而變化(或是時間隨著路程變),我們就把這兩種量叫做兩種相關(guān)聯(lián)的量。最后再用表(2)中的兩種量來鞏固這個概念。這樣的教學設(shè)計應該就能夠使學生很好地建立這個概念了,也就圓滿地完成了這一層的教學內(nèi)容。
反比例意義教學反思6
在教學反比例的意義時,我首先是聯(lián)系舊知、滲透難點。因為反比例的意義這一部分的內(nèi)容的編排跟正比例的意義比較相似,在教學反比例的意義時,我以學生學習的正比例的意義為基礎(chǔ),提出自主學習“要求”,讓學生主動、自覺地去觀察、分析、概括、發(fā)現(xiàn)規(guī)律。
對于學生來說,數(shù)量關(guān)系并不陌生,在以前的應用題學習中是反復強調(diào)過的,因此,學生觀察、分析、概括起來是較為輕松的。當學完例1時,我并沒有急于讓學生概括出反比例的意義,而是讓學生按照學習例1的方法學習試一試,接著對例1和試一試進行比較,得出它們的相同點,在此基礎(chǔ)上來揭示反比例的意義,就顯得水道渠成了。
然后,再通過說一說,讓學生對兩種相關(guān)聯(lián)的量進行判斷,以加深學生對反比例意義的理解。最后,通過學生對正反比例意義的對比,加強了知識的內(nèi)在聯(lián)系,通過區(qū)別不同的.概念,鞏固了知識。通過這節(jié)課的教學,我深深地體會到:要上好一節(jié)數(shù)學課很難,要上好每一節(jié)數(shù)學課就更難,原因多多……這節(jié)課課前我雖做了充分的準備,但還是存在一些問題。比如練習題安排難易不到位。由于學生剛接觸反比例的意義,應多練習學生接觸較多的題目,使學生的基礎(chǔ)得到鞏固,不能讓難題把學生剛建立起的知識結(jié)構(gòu)沖跨。
反比例意義教學反思7
《成反比例的量》是在學習《成正比例的量》之后學習的。為了吸取上次課的教學經(jīng)驗,我改變了教學方法,目是調(diào)動學生學習的興趣,培養(yǎng)學生自主學習的能力。
一、復習舊知,引入新知。
上課時,以已學過的正比例的意義為切入點,讓學生們先說一說成正比例的量的意義,并要求說出它的特征來;讓學生們說一說生活中有哪些成正比例的量,再說說你是如何來判斷這兩個量是否成正比例關(guān)系。這樣既復習了舊知,又為學習新的知識做好了一定的鋪墊。再出示課題:成反比例的量。讓學生們自己提出疑問:如成正比例的量是一個量增加,另一個量也增加,一個量減少,另一個量減少,那成反比例的量是不是一個增加,另一個量就減少呢?成正比例的兩個量是比值一定,那成反比例的量是什么一定呢?
二、自主探究,學習新知。
有了一些疑問,相信學生們會急著想要解決呢!我就順勢提出讓學生們自己看書來尋找這些答案,然后再進行交流。在交流的過程中,讓學生對別人的發(fā)言及時補充和發(fā)表自己看法,這樣既學會了思考,又培養(yǎng)了學生學會傾聽的學習習慣。接著對成正比例的量和成反比例的量進行比較,找到新舊知識之間的聯(lián)系與區(qū)別。在整個自主學習的過程中,學生們很好地利用已有知識和經(jīng)驗的遷移,理解了反比例的意義,不僅讓學生獲得了數(shù)學知識,還增強了自主學習數(shù)學的信心,同時還培養(yǎng)了學生自主獲取新知識的能力。
這課學生自主學習的積極性都很高,學習效果較好,為了鼓勵學生學習的積極和主動性,一是人人能自主積極參加新知的探索與學習;二是大家能充分合作,發(fā)揮出了各自的能力;三是大家學會了如何利用舊知識來學習新知識的方法;四是很多同學通過自主學習獲得知識后,有一種快樂感和成就感。
本節(jié)課內(nèi)容比較抽象、難懂,學生掌握有一定得困難。怎樣化解這一教學難點,使學生有效地理解和掌握這一重點內(nèi)容呢?我在本課的.教學中做了一些嘗試。
一、創(chuàng)設(shè)情境,激發(fā)求知欲望。
我從學生身邊發(fā)掘素材,組織活動,讓學生從活動中發(fā)現(xiàn)數(shù)學問題,從而引入學習內(nèi)容和學習目標。這就激發(fā)了學生學習數(shù)學的興趣,激起了自主參與的積極性和主動性,為自主探究新知較好的創(chuàng)設(shè)了現(xiàn)實背景。
二、深入探究,理解涵義
在演示的基礎(chǔ)上,我又不失時機地組織學生合作學習,討論、分析,因而取得滿意的效果:學生自己弄清了成反比例的兩種量之間的數(shù)量關(guān)系,初步認識了反比例的涵義,體驗了探索新知、發(fā)現(xiàn)規(guī)律的樂趣。
三、比較猜想,歸納規(guī)律
我考慮到例題比較相近,因此要注意學習方式必須加以改變。因此我采取把自主權(quán)交給學生方式,營造了民主、寬松、和諧的課堂氛圍,因而對例題的學習探索取得了比較好的效果。然后通過例題與例題進行比較,歸納出成反比例的兩種量的幾個特點,再以此和正比例的意義作比較,猜想出反比例的意義。最后經(jīng)過驗證,得出反比例的意義和關(guān)系式。既達成了本課的知識目標,又培養(yǎng)了推理的能力。
反比例意義教學反思8
首先簡單復習了一次函數(shù)、正比例函數(shù)的表達式,目的是想讓學生清楚每種函數(shù)都有其特有的表達式,對反比例函數(shù)表達式的總結(jié)作了一個鋪墊。其次利用題組(一)題組(二)對反比例函數(shù)的三種表示方法進行鞏固和熟悉。
例題非常簡單,在例題的處理上我注重了學生解題步驟的培養(yǎng),同時通過兩次變式進一步鞏固解法,并拓寬了學生的思路。在變式訓練之后,我又補充了一個綜合性題目的例題,(在上學期曾有過類似問題的,由于時間的久遠學生不是很熟悉)但在補充例題的處理上點撥不到位,導致這個問題的解決有點走彎路。
題組(三)在本節(jié)既是知識的鞏固又是知識的檢測,通過這組題目的處理,發(fā)現(xiàn)學生對本節(jié)知識的'掌握還可以。從整體來看,時間有點緊張,小結(jié)很是倉促,而且是由老師代勞了,沒有讓學生來談收獲,在這點有些包辦的趨勢。
雖然在題目的設(shè)計和教學設(shè)計上我注重了由淺入深的梯度,但有些問題的處理方式不是恰到好處,有的學生課堂表現(xiàn)不活躍,這也說明老師沒有調(diào)動起所有學生的學習積極性。
反比例意義教學反思9
本堂課是在學生學習了正比例的基礎(chǔ)上學習反比例,由于學生有了前面學習正比例的基礎(chǔ),加上正比例與反比例在意義上研究的時候存在有一定的共性,因此學生在整堂課的學習上與前面學習的正比例相比有明顯的提高,而且在課時的安排上,在學習正比例的安排了2個課時,這里只是安排了1個課時,緊隨著課之后教材安排了一堂正反比例比較、綜合的一堂課,對學生在出現(xiàn)正反比例有點模糊的時候就及時地加以糾正。
反比例關(guān)系和正比例關(guān)系一樣,是比較重要的一種數(shù)量關(guān)系,學生理解并掌握了這種數(shù)量關(guān)系,可以加深對比例的理解,并能應用它解決一些簡單的正、反比例方面的實際問題。同時通過反比例的教學,可以進一步滲透函數(shù)思想,為學生今后學習中學數(shù)學和物理、化學打下基礎(chǔ)。反比例的意義這部分內(nèi)容是在學生理解并掌握比和比例的意義、性質(zhì)的基礎(chǔ)上進行教學的,但概念比較抽象,學習難度比較大,是六年級教學內(nèi)容的一個教學重點也是一個教學難點。
在教學反比例的意義時,我首先通過復習,鞏固學生對正比例意義的理解。然后安排準備題正比例的判斷,從中發(fā)現(xiàn)第3小題不成正比例,從而引入學習內(nèi)容和學習目標。這通過復習、比較,不成正比例,那么它成不成比例呢?又會成什么比例?通過設(shè)疑不僅激發(fā)了學生學習數(shù)學的興趣,還激起了學生自主參與的積極性和主動性,為自主探究新知創(chuàng)造了條件并激發(fā)了積極的情感態(tài)度。因為反比例的意義這一部分的內(nèi)容的編排跟正比例的意義比較相似,在教學反比例的意義時,我以學生學習的正比例的意義為基礎(chǔ),在學生之間創(chuàng)設(shè)了一種自主探究、相互交流、相互合作的關(guān)系,讓學生主動、自覺地去觀察、分析、概括、發(fā)現(xiàn)規(guī)律,培養(yǎng)了學生的自主探究的能力。在學完例3后,我并沒有急于讓學生概括出反比例的意義,而是讓學生按照學習例3的方法學習試一試,接著對例3和試一試進行比較,得出它們的相同點,在此基礎(chǔ)上來揭示反比例的意義,就顯得水道渠成了。然后,再通過“想一想”中兩種相關(guān)聯(lián)的.量進行判斷,以加深學生對反比例意義的理解。最后,通過學生對正反比例意義的對比,加強了知識的內(nèi)在聯(lián)系,通過區(qū)別不同的概念,鞏固了知識。并通過練習,使學生加深對概念的理解。
通過這節(jié)課的教學我深深的體會到要上一堂數(shù)學課難,上好一堂數(shù)學課更難,課前雖做了充分的準備,但還是存在不少問題。比如練習題安排難易不到位。由于學生剛接觸反比例的意義,應多練習學生接觸較多的題目,使學生的基礎(chǔ)得到鞏固,不能讓難題把學生剛建立起的知識結(jié)構(gòu)沖跨。參與學生的探究不夠。親其師信其道,那么親其生知其道不為過,真正融入學生才能體會學生的思想才能真正落實教學新理念。
當然,教學過程中還或多或少存在其它的問題,但有問題就有收獲,在以后的教學中,認真反思,仔細分析,查找根源尋求對策,在教學的道路上不斷攀登。
----------------------
上完課后,雖然看了聽課老師給我的評價,但我一直在思考,學生是怎么評價的呢?在學生眼里,到底哪個地方出問題了呢?突然,靈機一動,干脆和學生一起交流一下吧,也許效果還更好呢?通過與學生交談,讓大家一起再次回顧本節(jié)課,找一找優(yōu)點和不足,學生的回答很是讓我驚奇,現(xiàn)摘錄如下:
優(yōu)點:
1、課堂導入新穎、有趣、有效,結(jié)尾有所創(chuàng)新,改變了以前“通過本節(jié)課的學習,大家有什么收獲呢?”等傳統(tǒng)方式,從而使得大家大家想學、樂學;
2、老師講的詳細,特別是講授兩種相關(guān)聯(lián)的量,用通俗、簡單的語言讓大家一聽就明白了,并且很快就可以判斷出是否是兩種相關(guān)聯(lián)的量;
3、題目與現(xiàn)實生活聯(lián)系緊密,讓大家感覺學習數(shù)學很有用;
4、課堂上學生討論的時間充足,參與度較高,且時效性較強;
5、課堂調(diào)控能力較強,有自己的教學風格;
6、板書明確、清晰,一目了然;
7、設(shè)計合理,處理偶發(fā)事件的能力較強。
缺點:
1、課堂氣氛沒有以前活躍;
2、知識量太大,難度較大,很少有不經(jīng)過思考或稍作思考就能回答出來的問題;
3、小組合作時,沒有分好工,導致在計算相對應的每組數(shù)的和、差、積、商時,每個同學都在計算,因而用的時間較多,如果四人小組分好工,沒人計算一種運算,時間就會節(jié)約一半。
4、對學生的鼓勵性語言欠缺;
5、板書中的字體不太規(guī)范,要加強基本功的訓練;
針對聽課老師和學生的評價,在以后的教學中,我會發(fā)揚優(yōu)點、克服不足,不斷提高自己的教學水平。
反比例意義教學反思10
我在教學“正比例和反比例的意義”這部分內(nèi)容著重使學生理解正反比例的意義。
生活是數(shù)學知識的源泉,正反比例是來源于生活的。
其次,能充分尊重學生主體,靈活運用知識,聯(lián)系生活實際,為學生提供豐富的感性材料,重過程練習
課上學生基本能夠正確判斷,說理也較清楚。
教學有法,但教無定法,貴在得法,我認為只要切合學生實際的,讓師生花最短的`時間獲得最大的學習效益的方法都是成功的,都是有價值的。
反比例意義教學反思11
接到學期公開課任務的當天晚上就開始著手準備,查找相關(guān)資料,做到心中有數(shù),怕自己做的不好,很是緊張。第二天先寫好了常規(guī)的教學設(shè)計,也算是雛形已定。我覺得對我自己來說,教學設(shè)計一定要先把握好教學目標的分析,所以我參照要求設(shè)定了合適的教學目標。初稿是按照流水帳形式,和平時上課一樣,按照復習引入、講授新課、分析例題、練習鞏固、歸納小結(jié)、布置作業(yè)等程序進行。初稿交給指導老師后,孟主任建議其中的復習引入環(huán)節(jié)做大的調(diào)整,對習題的設(shè)置也給出了指導建議,修改后流暢了很多。隨后設(shè)計了學卷,給董老師把關(guān)指導。因為我定位于層次相對高的學生,在習題的數(shù)量設(shè)置、坡度設(shè)置上不合理,難度不適宜。有些題目過于簡單,毫無價值;而有些則過難,在課堂上會耽誤很多時間,于是想到變式訓練,在題目設(shè)置的順序和難度上下功夫。
在第一次試講后,發(fā)現(xiàn)引入部分太拖沓,用了10分鐘時間才歸納得出反比例函數(shù)的定義和形式,隨后的兩個針對定義設(shè)計的稍難的題目就直接跨過到待定系數(shù)法求反比例函數(shù)解析式,課程結(jié)束得比較匆忙。
在備課組老師的指導下,重新設(shè)置了題目的數(shù)量,第4題中原來為了復習設(shè)置了五個小問題,在函數(shù)概念上糾纏過多,反而引起學生理解困難;把引入部分第5題的練習由原來的四個減少到兩個,剩下了的兩個留在第7題作為練習。由于函數(shù)解析式的形式通過歸納與對比形成新知識并不需要太多雷同的題目,這樣引入時間大大減少,而列關(guān)系式的題目難度并不大,把第一次的逐題講解變成了答案展示,節(jié)約了近10分鐘時間。其實開始是對學生的水平不太相信,怕題目過難,學生不能迅速完成,時間證明,引入部分的題目難度不大,學生能迅速完成,而我還是按照自己的想法進行第一次的試講,所以時間顯得很緊張,沒有顧及學生的實際水平。
第3題的最后一問“反比例函數(shù)kxy=還可以表示成什么的形式”,這個問題顯得很寬泛,學生也無從下手,不知從哪個角度入手,也不明白老師想問的問題到底是什么,這是一個無效的設(shè)計。后來結(jié)合要求,麗濤說新課只要求學生能辨認出偽裝后的反比例函數(shù)或者說經(jīng)過等價變形的反比例函數(shù)的形式,因此問題改成了以選擇題的`形式出現(xiàn),這樣學生也有了一定的目標范圍,也不會因為問題設(shè)置不合理而耽誤過多時間。當他能正確選擇出答案時,也說明他知道了這幾個答案是由標準形式經(jīng)歷了怎么樣的等價變形而得到的。
第6題目更改設(shè)計后是使得教學過程流暢了很多且節(jié)約了時間,但是在實際上課過程中,對這個問題忽略了,認為學生能直接選擇出答案就是他們已經(jīng)牢記了這些形式。此處應該在學生選擇了正確答案后,教師最好再花2分鐘的時間講解下變形過程,同時也回顧了分式的乘法、負指數(shù)的意義等知識,加深知識點之間的聯(lián)系;或者讓學生口頭回答他選擇的理由?傊谶@里應該停頓回顧下這個重要的知識點,以加深對新知識的印象,及時總結(jié)歸納反比例函數(shù)形式的特點,要能突破這個學生理解的難點,要不會對第8題的影響就比較大。
第5題在講解過程中花了過多的時間,說明前面kxy=及其變形講解不透徹。k值(反比例系數(shù))不能順利求出,表示y是的x反比例函數(shù)疑惑頗多,講解費時,在成反比例和反比例函數(shù)之間有混淆。經(jīng)過對比板書,學生明白了題目要求的是y與x成反比例,為了鞏固對反比例概念的理解,增加了練習6。
在講解用待定系數(shù)法求反比例函數(shù)的解析式時,原來只設(shè)計了講解例題,隨后的鞏固練習與例題幾乎完全相同,只是改變了數(shù)據(jù)而已,這樣的題目設(shè)計對學生來說是很不愿意接受的,但是用待定系數(shù)法求函數(shù)的解析式是一個重要的方法,學生必須動手寫一次,難度又不能加大太多,怎么辦呢?就結(jié)合小組活動,讓學生動起來。雖然多了考察內(nèi)容,但是都是最基本的內(nèi)容,難度沒有加大太多,學生也能按照順序順利解決問題
課堂歸納小結(jié)第一次設(shè)計的時候,就是問一句“本節(jié)課你有什么收獲?”,對于這些寬泛的問題,學生一般都不知怎么回答,所以要緊扣定義,引導學生。這樣,學生知道了本節(jié)課的內(nèi)容,也明白了空白處就是本節(jié)課的重點要掌握的部分了。
在講課的過程中,與學生的互動較少,沒有充分調(diào)動起學生的積極性,自己也有點緊張,學生也有點緊張。在數(shù)次不停修改教學設(shè)計的過程中,自己的認識也在不斷提高,題目設(shè)計水平也有了提高,指導老師,還有我的同事都給了我不少的建議和幫助,才使我的設(shè)計更臻完善,在此也感謝他們!
反比例意義教學反思12
教學內(nèi)容:
《反比例的意義》是六年制小學數(shù)學(人教版)第十二冊第一單元《比例》中的內(nèi)容。是在學過“正比例的意義”的基礎(chǔ)上,讓學生理解反比例的意義,并會判斷兩個量是否成反比例關(guān)系,加深對比例的理解。
學生分析:
在此之前,他們學習了正比例的意義,對“相關(guān)聯(lián)的量”、“成正比例的兩個量的變化規(guī)律”、“如何判斷兩個量是否成正比例”已經(jīng)有了認識,這為學習《反比例的意義》奠定了基礎(chǔ)。
設(shè)計理念:
學習方式的轉(zhuǎn)變是新課改的顯著特征,就是把學習過程中的分析、發(fā)現(xiàn)、探究、創(chuàng)新等認識活動凸顯出來。在設(shè)計《反比例的意義》時,根據(jù)學生的知識水平,對教學內(nèi)容進行處理,克服教材的局限性,最大限度地拓寬探究學習的空間,提供自主學習的機會。
教學目標:
1.通過探究活動,理解反比例的意義,并能正確判斷成反比例的量。
2.引導學生揭示知識間的聯(lián)系,培養(yǎng)學生分析判斷、推理能力
教學流程:
一、復習鋪墊,猜想引入
師:(1)表格里有哪兩個相關(guān)聯(lián)的量?(2)這兩個相關(guān)聯(lián)的量成正比例關(guān)系嗎?為什么?
2.猜想
師:今天我們要學習一種新的比例關(guān)系——反比例關(guān)系。(板書:反比例)
師:從字面上看“反比例”與“正比例”會是怎樣的關(guān)系?
生:相反的。
師:既然是相反的,你能聯(lián)系正比例關(guān)系猜想一下,在反比例關(guān)系中,一個量會怎樣隨著另一個量的變化而變化?它們的變化會有怎樣的規(guī)律?
生:(略)
反思:根據(jù)學生認知新事物大多由猜而起的規(guī)律,從概念的名稱“正、反”兩宇為切入點,引導學生“顧名思義”,對反比例的意義展開合理的`猜想,激起學生研究問題的愿望。
二、提供材料,組織研究
1.探究反比例的意義
師:大家的猜想是否合理,還需要進一步證明。下面我提供給大家?guī)讖埍砀,以小組為單位研究以下幾個問題。
(1)表中有哪兩個相關(guān)聯(lián)的量?
(2)兩個相關(guān)聯(lián)的量,一個量是怎樣隨著另一個量的變化而變化的?變化規(guī)律是什么?
2.小組討論、交流。(教師巡回查看,并做適當指導。)
3.匯報研究結(jié)果
(在匯報交流時,學生們紛紛發(fā)表自己的看法。當分析到表3時,大家開始爭論起來。)
生1:剩下的路程隨著已行路程的擴大而縮小,但積不一定。
生2:已行路程十剩下路程=總路程(一定)。
生3:我認為第一個同學的說法不準確,應該換成“增加”和“減小”……
(最后通過對比大家達成共識:只有表2和表3的變化規(guī)律有共性。)
師:表2和表3中兩個量的變化規(guī)律有哪些共性?(生答略。)
師:這兩個相關(guān)聯(lián)的量叫做成反比例的量,它們的關(guān)系叫做反比例關(guān)系。(完成板書。)
師:如果用字母A和B表示兩個相關(guān)聯(lián)的量,用C表示它們的積,你認為反比例關(guān)系可以用哪個關(guān)系式表示?[板書]
反思:教材中兩個例題是典型的反比例關(guān)系,但問題過“瘦”過“小”,思路過于狹窄,雖然學生易懂,但容易造成“知其然,而不知其所以然”。通過增加表3,更利于學生發(fā)現(xiàn)長×寬=長方形的面積(一定)這一關(guān)系式,有助于學生探究規(guī)律。同時還增加了表1、表4,把正比例關(guān)系、反比例關(guān)系、與反比例雷同(“和”一定)的情況混合在一起,給學生提供了甄別問題的機會。
4.做一做(略)
5.學習例6
師:剛才我們是參照表格中的具體數(shù)據(jù)來研究兩個量是不是成反比例關(guān)系,如果這兩個量直接用語言文字來描述,你還會判斷它們成不成反比例關(guān)系嗎?(投影出示例題。)
三、鞏固練習,拓展應用
1.基本練習。(略)
2.拓展應用。
師:你能舉一個反比例的例子嗎?(先自己舉例,寫在本子上,再集體交流。)
交流時,學生們爭先恐后,列舉了許多反比例的例子。課正在順利進行時,一個同學舉的“正方形的邊長×邊長=面積(一定),邊長和邊長成反比例”的例子引起了學生們的爭論。,教師沒有馬上做判斷,而是問學生:“能說出你的理由嗎?”有的學生說:“因為乘積一定,所以邊長和邊長成反比例關(guān)系!睂λ囊庖娪械耐瑢W點頭稱是,而有的同學卻搖頭……忽然,一名同學像發(fā)現(xiàn)新大陸一樣大聲叫起來:“不對!邊長不隨著邊長的擴大而縮小!這是一種量!”一句話使大家恍然大悟:對啊!邊長是一種量,它們不是相關(guān)聯(lián)的兩個量,所以邊長和邊長不成反比例。后來又有一名同學舉例:“邊長×4=正方形的周長(一定),邊長和4成反比例。”話音剛落,學生們就齊喊起來:“不對!邊長和4不是相關(guān)聯(lián)的兩個量。”
反思:通過“你能舉一個反比例的例子嗎?”這樣一個開放性練習題,讓學生聯(lián)系已有的知識,使新舊知識有機結(jié)合,幫助學生建立起良好的認知結(jié)構(gòu),這同時也是對數(shù)量關(guān)系一次很好的整理復習機會,通過舉例進一步明確如何判斷兩個量是否成反比例。
3.綜合練習
四、總結(jié)
反思:
《數(shù)學課程標準》中指出:“學生的數(shù)學學習內(nèi)容應當是現(xiàn)實的、有意義的、富有挑戰(zhàn)性的,這些內(nèi)容要有利于學生主動地進行觀察、實驗、猜測、驗證、推理與交流等數(shù)學活動。”而現(xiàn)行的小學數(shù)學高年級教材,內(nèi)容偏窄、偏深,部分知識抽象嚴密、邏輯性強、脫離學生的生活實際,與新教材相比明顯滯后。如何將新的課改理念與舊教材有機整合,是我們每一個數(shù)學教師應該思考探索的課題。
反比例意義教學反思13
蘇霍姆林斯基說過:“在人的心靈深處,總有一種根深蒂固的需要,這就是希望自己是一個發(fā)現(xiàn)者、研究者、探索者!边@種需要在兒童的身上表現(xiàn)得更為突出。一旦學生的學習興趣被激發(fā)起來,他們就希望通過自己的努力來獲取知識,從而體驗成功的喜悅。
考慮到學生學習基礎(chǔ)、能力的差異,練習設(shè)計為學生提供多層次、多種類的選擇,以滿足不同層次學生發(fā)展的需要。以上的幾個練習分成三個層次,設(shè)置了三個智力臺階(基礎(chǔ)性練習、綜合性練習、拓展性練習),適合不同層次學生的`需要,為不同層次的學生提供取得成功機會,使他們在練習中獲得成功的體驗,樹立積極自信的信心。
現(xiàn)在數(shù)學與實際生活聯(lián)系越來越密切,應用性越來越強,我在這節(jié)課的練習設(shè)計也反映這一特點,其中有許多與現(xiàn)實生活及各行各業(yè)密切聯(lián)系的習題,既有學生做練習,騎車上學,又有學校燒煤、買課桌,農(nóng)民播種,工廠運貨物等問題。使學生體會到數(shù)學來源于現(xiàn)實生活,又服務于現(xiàn)實生活的特點,體現(xiàn)數(shù)學的應用性。
反比例意義教學反思14
這部分內(nèi)容是在學生認識了正比例的意義以及應用的基礎(chǔ)上進行教學的,主要任務是使學生認識反比例關(guān)系的意義,掌握成反比例量的變化規(guī)律及其特征,能依據(jù)反比例的意義判斷兩種量成不成反比例。由于學生憑借正比例的學習,因此這節(jié)課可以做一個“放手”的老師了。
課上先回憶如何去判斷兩種相聯(lián)的量成正比例關(guān)系,然后出示信息窗的表格,問這兩種量成正比例嗎?學生馬上得出不成,因為兩種量的比值是不一定的。從而引導學生觀察表中數(shù)據(jù),小組討論:(1)哪兩種量是相關(guān)聯(lián)的量?(2)這兩種量的變化規(guī)律與正比例的兩種量的.變化規(guī)律有什么不同?(3)這種變化有沒有規(guī)律?是怎樣的規(guī)律?課上重點研究(2)和(3)兩個問題,得出這兩種量的變化規(guī)律是一種量在變大,另一種量在變小,一種量變小,另一種量變大,是相反的,突出反比例的一個“反”字。不管這兩種量怎樣變化,但是萬變中有不變,這兩個量的積是不變的(一定的)。揭示這兩種量是成反比例的。讓學生說說成反比例的三個條件,受正比例的影響,學生一下就說出來了!然后我直接給出,“糖果廠包裝一批糖果,每袋糖果的粒數(shù)和裝的袋數(shù)是否成反比例,為什么?”學生也很流利地把問題解決了
最后出示三個填空:填成正比例、反比例或不成比例
長方形的面積一定,長和寬( )。
三角形的面積一定,底和高( )。
圓錐的底一定,圓錐的體積和高( )。
第一小題沒有問題,第二小題問題比較多,都說不成比例,第三題有的同學不動腦筋,受反比例影響也說是成反比例了。
整節(jié)課我很順利地完成教學任務,在知識的遷移性的應用上我感覺挺不錯,而這也讓我明白打牢知識的基礎(chǔ)才能很好的發(fā)揮知識的遷移性,它能讓自己的教學輕松自如,讓孩子們對學習更加充滿自信,更能體驗到學習成功的快樂。
反比例意義教學反思15
反比例的意義的教學,考慮到前面正比例的教學,所以在教學上就采用了正比例這樣的教學程序。通過逐層深化的方法慢慢幫助學生建立反比例的正確意義。由具體數(shù)據(jù)和表格式的例題的教學到具體數(shù)量之間的關(guān)系的判斷。然后再到一些比較特別的例子的判斷,從而慢慢形成反比例的正確理解。
因為反比例的意義這一部分內(nèi)容的編排跟正比例的意義比較相似,在教學反比例的意義時,我以學生學習正比例的意義為基礎(chǔ),采取了放手的形式,通過開始教師引導后就直接把研究和討論的要求交給了學生,在學生之間創(chuàng)設(shè)了一種相互交流、相互合作、相互幫助的關(guān)系,讓學生主動、自覺地去觀察、分析、概括、發(fā)現(xiàn)規(guī)律,這樣不僅僅是教會了學生學習的內(nèi)容,還培養(yǎng)了學生的自學能力。
本堂課是在學生學習了正比例的基礎(chǔ)上學習反比例,由于學生有了前面學習正比例的基礎(chǔ),加上正比例與反比例在意義上研究的時候存在著一定的.共性,因此學生在整堂課的思維上與前面學習的正比例相比有明顯的提高。但是這一節(jié)課還是出現(xiàn)一些學生注意力不夠集中的情況。同時在教學中由于小組合作的關(guān)系,個別學困生沒有做到較好的參與。
【反比例意義教學反思】相關(guān)文章:
《反比例的意義》教學反思03-15
《反比例意義》教學反思12-10
反比例意義教學反思02-10
《反比例意義》教學反思15篇02-10
反比例意義教學反思15篇02-10
反比例意義教學反思(15篇)02-13
《反比例意義》教學反思(15篇)02-14
反比例意義教學反思(集合15篇)02-14
反比例意義教學反思集錦15篇02-13
《反比例意義》教學反思集合15篇02-14