- 相關(guān)推薦
正弦函數(shù)、余弦函數(shù)圖像教案
作為一名為他人授業(yè)解惑的教育工作者,有必要進(jìn)行細(xì)致的教案準(zhǔn)備工作,編寫(xiě)教案有利于我們準(zhǔn)確把握教材的重點(diǎn)與難點(diǎn),進(jìn)而選擇恰當(dāng)?shù)慕虒W(xué)方法?靵(lái)參考教案是怎么寫(xiě)的吧!下面是小編整理的正弦函數(shù)、余弦函數(shù)圖像教案,僅供參考,希望能夠幫助到大家。
正弦函數(shù)、余弦函數(shù)圖像教案1
由于學(xué)生已具備初等函數(shù)、三角函數(shù)線知識(shí),為研究正弦函數(shù)圖象提供了知識(shí)上的積累;因此本教學(xué)設(shè)計(jì)理念是:通過(guò)問(wèn)題的提出,引起學(xué)生的好奇,用操作性活動(dòng)激發(fā)學(xué)生求知欲,為發(fā)現(xiàn)新知識(shí)創(chuàng)設(shè)一個(gè)最佳的心理和認(rèn)識(shí)環(huán)境,引導(dǎo)學(xué)生關(guān)注正弦函數(shù)的圖象及其作法;并借助電腦多媒體使教師的設(shè)計(jì)問(wèn)題與活動(dòng)的引導(dǎo)密切結(jié)合,強(qiáng)調(diào)學(xué)生“活動(dòng)”的內(nèi)化,以此達(dá)到使學(xué)生有效地對(duì)當(dāng)前所學(xué)知識(shí)的意義建構(gòu)的目的,感覺(jué)效果很好。
課后反思:
比較成功的地方:
1.教學(xué)思路清晰,各個(gè)環(huán)節(jié)過(guò)渡比較自然,課堂教學(xué)設(shè)計(jì)得比較緊湊.
2.教學(xué)設(shè)計(jì)對(duì)于正弦曲線、余弦曲線首先從實(shí)驗(yàn)入手形成直觀印象,然后探究畫(huà)法,列表,描點(diǎn)、連線——“描點(diǎn)法”作圖,對(duì)于函數(shù)y=sinx,當(dāng)x取值時(shí),y的值大都是近似值,加之作圖上的誤差,很難認(rèn)識(shí)新函數(shù)y=sinx的圖象的真實(shí)面貌.因?yàn)樵谇懊嬉呀?jīng)學(xué)習(xí)過(guò)三角函數(shù)線,這就為用幾何法作圖提供了基礎(chǔ).這樣設(shè)計(jì)比較自然,合理,符合學(xué)生認(rèn)知的基本規(guī)律.
3.利用正弦線作出y=sinx在[0, 2?]內(nèi)的圖象,再得到正弦曲線,這里借助角周而復(fù)始的變化,體會(huì)后面性質(zhì)“周期”,這樣的設(shè)計(jì)由局部到整體,符合探究的一般方法.
4.對(duì)于“五點(diǎn)法”老師讓學(xué)生通過(guò)觀察、學(xué)生討論、進(jìn)一步合作
交流得到“五點(diǎn)法”作圖,也是本節(jié)課中一大的亮點(diǎn),充分體現(xiàn)以學(xué)生為主的教學(xué)思路.
5.通過(guò)展示課件,生動(dòng)形象地再現(xiàn)三角函數(shù)線的平移和曲線形成過(guò)程.使原本枯燥地知識(shí)變得生動(dòng)有趣,激發(fā)學(xué)生的興趣.
6.在得到正弦函數(shù)的圖象后,通過(guò)一個(gè)探究,引導(dǎo)學(xué)生利用誘導(dǎo)公式,結(jié)合圖象變換研究余弦函數(shù)的圖象,體現(xiàn)了新課改中倡導(dǎo)的`“自主探究、合作交流”的教學(xué)理念,有利于培養(yǎng)學(xué)生主動(dòng)探究的意識(shí). 需要改進(jìn)的地方:
1.時(shí)間的把握要恰當(dāng),否則會(huì)影響課堂后面內(nèi)容的安排.
2.在由正弦函數(shù)的圖象得到余弦函數(shù)的圖象的探究過(guò)程中,設(shè)計(jì)了讓學(xué)生“自主探究、合作交流”的教學(xué)思路,但學(xué)生對(duì)“合作—交流”的熱情不夠,不太主動(dòng)——在調(diào)動(dòng)學(xué)生積極參與課堂活動(dòng)方面做得不夠好.
3.由于導(dǎo)入的過(guò)程時(shí)間稍長(zhǎng),加之本節(jié)課的容量過(guò)大,盡管在例題的教學(xué)過(guò)程中及時(shí)的改變了教學(xué)策略,把例1中的第(2)小題交由學(xué)生練習(xí),還是導(dǎo)致了學(xué)生練習(xí)時(shí)間較少.
正弦函數(shù)、余弦函數(shù)圖像教案2
一、教學(xué)內(nèi)容分析
本節(jié)內(nèi)容是高一數(shù)學(xué)必修4(蘇教版)第三章《三角恒等變換》第一節(jié)的內(nèi)容,重點(diǎn)放在兩角差的余弦公式的推導(dǎo)和證明上,其次是利用公式解決一些簡(jiǎn)單的三角函數(shù)問(wèn)題。 在學(xué)習(xí)本章之前,已經(jīng)學(xué)習(xí)了三角函數(shù)及向量的有關(guān)知識(shí),從而為溝通代數(shù)、幾何與三角函數(shù)的聯(lián)系提供了重要的工具。本章我們將使用這些工具探討三角函數(shù)值的運(yùn)算。本節(jié)內(nèi)容不僅是推導(dǎo)正弦和(差)角公式、正切和(差)角公式及倍角公式的基礎(chǔ),對(duì)于三角變換,三角恒等式的證明,三角函數(shù)式的化簡(jiǎn)、求值等三角問(wèn)題的解決有重要的支撐作用,而且其推導(dǎo)過(guò)程本身就具有重要的教育價(jià)值。
二、學(xué)生學(xué)習(xí)情況分析
本節(jié)課的主要內(nèi)容是“兩角差的余弦公式的推導(dǎo)及證明”,用到的工具有“單位圓中三角函數(shù)的定義”和“平面向量數(shù)量積的定義及坐標(biāo)表示”,都屬于基礎(chǔ)知識(shí),內(nèi)容簡(jiǎn)單,容易理解和接受。但是在向量法證明的過(guò)程中,向量夾角的范圍是[0,π],與兩角差α—β的范圍不一致,學(xué)生對(duì)角的范圍說(shuō)明不清,是本節(jié)課的難點(diǎn)。
三、設(shè)計(jì)思想
教學(xué)理念:以“研究性學(xué)習(xí)”為載體,培養(yǎng)學(xué)生自主學(xué)習(xí)、小組合作的能力。
教學(xué)原則:注重學(xué)生自主學(xué)習(xí)與探究能力的培養(yǎng),體現(xiàn)學(xué)生個(gè)性的發(fā)展與小組合作共性的融合。
教學(xué)方法:先學(xué)后教,小組合作,師生互動(dòng)。
四、教學(xué)目標(biāo)
知識(shí)與技能:了解用向量法推導(dǎo)兩角差的余弦公式的過(guò)程,掌握兩角和(差)的余弦公式并能運(yùn)用公式進(jìn)行簡(jiǎn)單的三角函數(shù)式的化簡(jiǎn)、求值。
過(guò)程與方法:自主探究?jī)山遣畹挠嘞夜降谋憩F(xiàn)形式,經(jīng)歷用向量的數(shù)量積推導(dǎo)兩角差的余弦公式的過(guò)程,并能獨(dú)立利用余弦的差角公式推出余弦的和角公式,理解化歸思想在三角變換中的作用。
情感態(tài)度與價(jià)值觀:體驗(yàn)和感受數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的過(guò)程,感悟事物之間普遍聯(lián)系和轉(zhuǎn)化的關(guān)系。
五、教學(xué)重點(diǎn)與難點(diǎn)
重點(diǎn):兩角差的余弦公式的推導(dǎo)及證明。
難點(diǎn):引入向量法證明兩角差的余弦公式及兩角差范圍的說(shuō)明。
六、教學(xué)程序設(shè)計(jì)
1、情境創(chuàng)設(shè),課上展示。
課前探究:
課上展示:請(qǐng)同學(xué)們展示一下課前所得到的結(jié)果吧。
設(shè)計(jì)意圖:課前以問(wèn)題串的形式給學(xué)生指明研究方向。問(wèn)題層層遞進(jìn),從特殊到一般,使學(xué)生的研究具有一定的坡度性。既讓學(xué)生容易上手,又讓學(xué)生在研究過(guò)程中慢慢深入與提高。
主要目的:讓學(xué)生自主發(fā)現(xiàn)兩角差的余弦公式的表達(dá)形式。
通過(guò)課上展示,學(xué)生把課下研究出來(lái)的成果與全班同學(xué)共享,產(chǎn)生共鳴,為進(jìn)一步研究?jī)山遣畹挠嘞夜阶龊脺?zhǔn)備,同時(shí)增強(qiáng)表達(dá)能力及自信心。
2、合作探究,小組展示。
探究一:兩角差的余弦公式的推導(dǎo)
問(wèn)題4:?jiǎn)栴}2中我們所得到的結(jié)論對(duì)于任意角還成立嗎?你能證明嗎?
問(wèn)題5:觀察我們得到結(jié)論的形式,你能聯(lián)想到什么呢?
探究二:兩角和的余弦公式的推導(dǎo)
問(wèn)題6:你能根據(jù)差角的余弦公式推導(dǎo)出和角的余弦公式嗎?
問(wèn)題7:比較差角的余弦公式與和角的余弦公式,它們?cè)诮Y(jié)構(gòu)上有何異同點(diǎn)?
通過(guò)小組展示,各個(gè)小組之間產(chǎn)生思維的碰撞,迸出火花,得到新的靈感與智慧。從而培養(yǎng)學(xué)生團(tuán)結(jié)協(xié)作與小組合作的能力。
3、鞏固知識(shí),例題講解。
例1:利用兩角和與差的余弦公式證明下列誘導(dǎo)公式:
例3:化簡(jiǎn)cos100°cos40°+sin80°sin40°
設(shè)計(jì)意圖:教師對(duì)各小組展示內(nèi)容做適當(dāng)點(diǎn)評(píng),并且對(duì)“向量法證明的優(yōu)點(diǎn)”,“向量法證明過(guò)程的完善”,“向量法中向量夾角與兩角差的范圍的統(tǒng)一”做簡(jiǎn)要講解。
例1,例2都是公式的直接應(yīng)用。例1讓學(xué)生體會(huì)誘導(dǎo)公式將余弦的和差角公式推導(dǎo)出正弦的和差角公式,為下節(jié)課埋下伏筆。例2中根據(jù)cos15°的值求sin15°的值,tan15°的值的過(guò)程都是為推導(dǎo)正弦和差公式,正切和差公式做鋪墊。
變式將例2中具體的角變成抽象的.角,利用同角三角函數(shù)公式求解。在由sinα的值求cosα的值或由cosβ的值求sinβ的值時(shí),要注意根據(jù)角的范圍確定三角函數(shù)值的符號(hào)。 例3:是公式的逆用,培養(yǎng)學(xué)生逆向思維的能力,讓學(xué)生對(duì)公式結(jié)構(gòu)再認(rèn)識(shí)。
4、提升總結(jié),鞏固練習(xí)。
提升總結(jié):針對(duì)上面的3個(gè)例題,談?wù)勀銓W(xué)到了什么?
。2)利用兩角和差的余弦公式求值時(shí),應(yīng)注意觀察、分析題設(shè)和公式的結(jié)構(gòu)特點(diǎn),從整體上把握公式,靈活的運(yùn)用公式。
。3)在解題過(guò)程中,要注意角的范圍,確定三角函數(shù)值的符號(hào),以防增根、漏根。 設(shè)計(jì)意圖:主要以學(xué)生總結(jié)為主,老師做適當(dāng)點(diǎn)評(píng)及補(bǔ)充。
七、教學(xué)反思
本節(jié)課主要以學(xué)生的自主學(xué)習(xí)、小組合作為主,充分發(fā)揮了學(xué)生的自主探究能力和團(tuán)隊(duì)協(xié)作能力,提高了學(xué)生發(fā)現(xiàn)問(wèn)題、探究問(wèn)題和解決問(wèn)題的能力。情境創(chuàng)設(shè)中利用三個(gè)問(wèn)題讓學(xué)生在課前提前熟悉本節(jié)課所學(xué)的內(nèi)容“是什么”,“我能得到哪些結(jié)論”,調(diào)動(dòng)了學(xué)生的思維與學(xué)習(xí)的積極性,激發(fā)了學(xué)生的求知欲。但是
但是如果給出圖像,則又會(huì)限制數(shù)學(xué)優(yōu)秀的學(xué)生的解題思路與方法,這對(duì)矛盾是由學(xué)生的差異所決定的。教師在課堂上應(yīng)指導(dǎo)、啟發(fā)學(xué)生,注意教學(xué)的示范性,明確解題的規(guī)范性,實(shí)現(xiàn)學(xué)生在學(xué)習(xí)過(guò)程中知識(shí)的跨越?傊,教學(xué)有法,教無(wú)定法,貴在得法,為了提高課堂教學(xué)效率,我們要從學(xué)生的實(shí)際出發(fā),以學(xué)法帶動(dòng)教法,為高效課堂保駕護(hù)航。
正弦函數(shù)、余弦函數(shù)圖像教案3
教材分析
三角函數(shù)是基本初等函數(shù)之一,是描述周期現(xiàn)象的重要數(shù)學(xué)模型,是函數(shù)大家庭的一員。除了基本初等函數(shù)的共性外,三角函數(shù)也有其個(gè)性的特征,如圖像、周期性、單調(diào)性等,所以本節(jié)內(nèi)容有著承上啟下的作用;另外,學(xué)習(xí)完三角函數(shù)的定義之后,必然要研究其性質(zhì),而研究函數(shù)的性質(zhì)最常用、最形象直觀的方法就是作出其圖像,再通過(guò)圖像研究其性質(zhì)。由于正弦線、余弦線已經(jīng)從“形”的角度描述了三角函數(shù),因此利用單位圓中的三角函數(shù)線畫(huà)正弦函數(shù)圖象是一個(gè)自然的想法.當(dāng)然,我們還可以通過(guò)三角函數(shù)的定義、三角函數(shù)值之間的內(nèi)在聯(lián)系性等來(lái)作圖,從畫(huà)出的圖形中觀察得出五個(gè)關(guān)鍵點(diǎn),得到“五點(diǎn)法”畫(huà)正弦函數(shù)、余弦函數(shù)的簡(jiǎn)圖. 教學(xué)目標(biāo)
1.通過(guò)簡(jiǎn)諧振動(dòng)實(shí)驗(yàn)演示,讓學(xué)生對(duì)函數(shù)圖像有一些直觀的感知,形成正弦曲線的初步認(rèn)識(shí),進(jìn)而探索正弦曲線準(zhǔn)確的作法,養(yǎng)成善于發(fā)現(xiàn)、善于探究的良好習(xí)慣.學(xué)會(huì)遇到新問(wèn)題時(shí)善于調(diào)動(dòng)所學(xué)過(guò)的知識(shí),較好地運(yùn)用新舊知識(shí)之間的聯(lián)系,提高分析問(wèn)題、解決問(wèn)題的能力.
2.通過(guò)本節(jié)學(xué)習(xí),理解正弦函數(shù)、余弦函數(shù)圖象的畫(huà)法.借助圖象變換,了解函數(shù)之間的內(nèi)在聯(lián)系.通過(guò)三角函數(shù)圖象的三種畫(huà)法:描點(diǎn)法、幾何法、五點(diǎn)法,體會(huì)用“五點(diǎn)法”作圖給我們學(xué)習(xí)帶來(lái)的好處,并會(huì)熟練地畫(huà)出一些較簡(jiǎn)單的函數(shù)圖象.
3.通過(guò)本節(jié)的學(xué)習(xí),讓學(xué)生體會(huì)數(shù)學(xué)中的圖形美,體驗(yàn)善于動(dòng)手操作、合作探究的學(xué)習(xí)方法帶來(lái)的成功愉悅.滲透由抽象到具體的思想,加深數(shù)形結(jié)合思想的認(rèn)識(shí),理解動(dòng)與靜的辯證關(guān)系,樹(shù)立科學(xué)的辯證唯物主義觀. 重點(diǎn)難點(diǎn)
教學(xué)重點(diǎn):正弦函數(shù)、余弦函數(shù)的圖象.
教學(xué)難點(diǎn):將單位圓中的正弦線通過(guò)平移轉(zhuǎn)化為正弦函數(shù)圖象上的點(diǎn);正弦函數(shù)與余弦函數(shù)圖象間的關(guān)系.
教學(xué)用具:多媒體教學(xué)、幾何畫(huà)板軟件、ppt控件 教學(xué)過(guò)程 導(dǎo)入新課
1.(復(fù)習(xí)導(dǎo)入)首先復(fù)習(xí)相關(guān)準(zhǔn)備知識(shí):三角函數(shù)、三角函數(shù)線。遇到一個(gè)新的函數(shù),非常自然的是畫(huà)出它的圖象,觀察圖象的形狀,看看有什么特殊點(diǎn),并借助圖象研究它的性質(zhì),如:值域、單調(diào)性、奇偶性、最大值與最小值等.我們也很自然的想知道y=sinx與y=cosx的圖象是怎樣的呢?回憶我們是如何畫(huà)出它們圖象的(列表描點(diǎn)法:列表、描點(diǎn)、連線)?
2.(物理實(shí)驗(yàn)導(dǎo)入)視頻觀看“簡(jiǎn)諧運(yùn)動(dòng)”實(shí)驗(yàn).得到一條曲線,它就是簡(jiǎn)諧運(yùn)動(dòng)的圖象.物理中把簡(jiǎn)諧運(yùn)動(dòng)的圖象叫做“正弦曲線”或“余弦曲線”.有了上述實(shí)驗(yàn),你對(duì)正弦函數(shù)、余弦函數(shù)的圖象是否有了一個(gè)直觀的印象?畫(huà)函數(shù)的圖象,最基本的方法是我們以前熟知的列表描點(diǎn)法,但不夠精確.下面我們利用正弦線畫(huà)出比較精確的正弦函數(shù)圖象. 推進(jìn)新課
新知探究 提出問(wèn)題
問(wèn)題①:作正弦函數(shù)圖象的各點(diǎn)的'縱坐標(biāo)都是查三角函數(shù)表得到的數(shù)值,由于對(duì)一般角的三角函數(shù)值都是近似值,不易描出對(duì)應(yīng)點(diǎn)的精確位置.我們?nèi)绾蔚玫饺我饨堑娜呛瘮?shù)值并用線段長(zhǎng)(或用有向線段數(shù)值)表示x角的三角函數(shù)值?怎樣得到函數(shù)圖象上點(diǎn)的兩個(gè)坐標(biāo)的準(zhǔn)確數(shù)據(jù)呢?簡(jiǎn)單地說(shuō),就是如何得到y(tǒng)=sinx,x∈[0,2π]的精確圖象呢?
問(wèn)題②:如何得到y(tǒng)=sinx,x∈R時(shí)的圖象?
對(duì)問(wèn)題①,第一步,可以想象把單位圓圓周剪開(kāi)并12等分,再把x軸上從0到2π這一段分成12等份.由于單位圓周長(zhǎng)是2π,這樣就解決了橫坐標(biāo)問(wèn)題.過(guò)⊙O1上的各分點(diǎn)作x軸的垂線,就可以得到對(duì)應(yīng)于0、2π等角的正弦線,這樣就解決了縱坐標(biāo)問(wèn)題(相6432當(dāng)于“列表”).第二步,把角x的正弦線向右平移,使它的起點(diǎn)與x軸上的點(diǎn)x重合,這就得到了函數(shù)對(duì)(x,y)(相當(dāng)于“描點(diǎn)”).第三步,再把這些正弦線的終點(diǎn)用平滑曲線連接起來(lái),我們就得到函數(shù)y=sinx在[0,2π]上的一段光滑曲線(相當(dāng)于“連線”).如圖1所示(這一過(guò)程用課件演示,讓學(xué)生仔細(xì)觀察怎樣平移和連線過(guò)程.然后讓學(xué)生動(dòng)手作圖,形成對(duì)正弦函數(shù)圖象的感知).這是本節(jié)的難點(diǎn),教師要和學(xué)生共同探討
對(duì)問(wèn)題②,因?yàn)榻K邊相同的角有相同的三角函數(shù)值,所以函數(shù)y=sinx在x∈[2kπ,2(k+1)π],k∈Z且k≠0上的圖象與函數(shù)y=sinx在x∈[0,2π]上的圖象的形狀完全一致,只是位置不同.于是我們只要將函數(shù)y=sinx,x∈[0,2π]的圖象向左、右平行移動(dòng)(每次2π個(gè)單位長(zhǎng)度),就可以得到正弦函數(shù)y=sinx,x∈R的圖象.(這一過(guò)程用課件處理,讓同學(xué)們仔細(xì)觀察整個(gè)圖的形成過(guò)程,感知周期性)
操作結(jié)果、總結(jié)提煉:①利用正弦線,通過(guò)等分單位圓及平移即可得到y(tǒng)=sinx,x∈[0,2π]的圖象. ②左、右平移,每次2π個(gè)長(zhǎng)度單位即可. 提出問(wèn)題
如何畫(huà)出余弦函數(shù)y=cosx,x∈R的圖象?你能從正弦函數(shù)與余弦函數(shù)的關(guān)系出發(fā),利用正弦函數(shù)圖象得到余弦函數(shù)圖象嗎?
意圖:如果再用余弦線作余弦函數(shù)的圖象那太麻煩了,根據(jù)已學(xué)的知識(shí),教師引導(dǎo)學(xué)生觀察誘導(dǎo)公式,思考探究?jī)蓚(gè)函數(shù)之間的關(guān)系,通過(guò)怎樣的坐標(biāo)變換可得到余弦函數(shù)圖象?讓學(xué)生從函數(shù)解析式之間的關(guān)系思考,進(jìn)而學(xué)習(xí)通過(guò)圖象變換畫(huà)余弦函數(shù)圖象的方法.讓學(xué)生動(dòng)手做一做,體會(huì)正弦函數(shù)圖象與余弦函數(shù)圖象的異同,感知兩個(gè)函數(shù)的整體形狀,為下一步學(xué)習(xí)正弦函數(shù)、余弦函數(shù)的性質(zhì)打下基礎(chǔ). 討論結(jié)果:
把正弦函數(shù)y=sinx,x∈R的圖象向左平移個(gè)單位長(zhǎng)度即可得到余弦函數(shù)圖象
正弦函數(shù)y=sinx,x∈R的圖象和余弦函數(shù)y=cosx,x∈R的圖象分別叫做正弦曲線和余弦曲線點(diǎn).
提出問(wèn)題 問(wèn)題①:以上方法作圖,雖然精確,但不太實(shí)用,自然我們想尋求快捷地畫(huà)出正弦函數(shù)圖象的方法.你認(rèn)為哪些點(diǎn)是關(guān)鍵性的點(diǎn)? 問(wèn)題②:你能確定余弦函數(shù)圖象的關(guān)鍵點(diǎn),并作出它在[0,2π]上的圖象嗎? 活動(dòng):對(duì)問(wèn)題①,教師可引導(dǎo)學(xué)生從圖象的整體入手觀察正弦函數(shù)的圖象,發(fā)現(xiàn)在[0,2π]上有五個(gè)點(diǎn)起關(guān)鍵作用,只要描出這五個(gè)點(diǎn)后,函數(shù)y=sinx在[0,2π]上的圖象的形狀就基本上確定了.這五點(diǎn)如下: (0,0),(3,1),(π,0),(,-1),(2π,0).
因此,在精確度要求不太高時(shí),我們常常先找出這五個(gè)關(guān)鍵點(diǎn),然后用光滑的曲線將它們連接起來(lái),就可快速得到函數(shù)的簡(jiǎn)圖.這種近似的“五點(diǎn)(畫(huà)圖)法”是非常實(shí)用的,要求熟練掌握.
對(duì)問(wèn)題②,引導(dǎo)學(xué)生通過(guò)類比,很容易確定在[0,2π]上起關(guān)鍵作用的五個(gè)點(diǎn),并指導(dǎo)學(xué)生通過(guò)描這五個(gè)點(diǎn)作出在[0,2π]上的圖象. 討論結(jié)果:①略. ②關(guān)鍵點(diǎn)也有五個(gè),它們是:(0,1),(3,0),(π,-1),(,0),(2π,1).
學(xué)生練習(xí)鞏固:1。用五點(diǎn)法作出函數(shù)y=sinx在[0,2π]上的圖象;2. 用五點(diǎn)法作出函數(shù)y=cosx
在[0,2π]上的圖象 應(yīng)用示例
例1 畫(huà)出下列函數(shù)的簡(jiǎn)圖 (1)y=1+sinx,x∈[0,2π];(2)y=-cosx,x∈[0,2π]描點(diǎn)并將它們用光滑的曲線連接起來(lái)
課堂小結(jié)
以提問(wèn)的方式,先由學(xué)生反思學(xué)習(xí)內(nèi)容并回答,教師再作補(bǔ)充完善.
1.怎樣利用“周而復(fù)始”的特點(diǎn),把區(qū)間[0,2π]上的圖象擴(kuò)展到整個(gè)定義域的?
2.如何利用圖象變換從正弦曲線得到余弦曲線?
這節(jié)課學(xué)習(xí)了正弦函數(shù)、余弦函數(shù)圖象的畫(huà)法.除了它們共同的代數(shù)描點(diǎn)法、幾何描點(diǎn)法之外,余弦函數(shù)圖象還可由平移交換法得到.“五點(diǎn)法”作圖是比較方便、實(shí)用的方法,應(yīng)熟練掌握.數(shù)形結(jié)合思想、運(yùn)動(dòng)變化觀點(diǎn)都是學(xué)習(xí)本課內(nèi)容的重要思想方法.
3.課后請(qǐng)同學(xué)們利用三角函數(shù)線(把單位圓8等分)來(lái)作出正弦函數(shù)圖象?(思考為什么要進(jìn)行8等分)
教學(xué)反思:
這節(jié)課從整體上看,比較圓滿完成了既定的教學(xué)目標(biāo):正弦函數(shù)、余弦函數(shù)的圖像,以及掌握五點(diǎn)法,利用五點(diǎn)法作出函數(shù)的圖像,注意函數(shù)之間的內(nèi)在聯(lián)系。學(xué)生掌握了三角函數(shù)的定義之后,自然而然就會(huì)去研究函數(shù)的性質(zhì),而研究函數(shù)的性質(zhì)一般從函數(shù)的圖像入手,本節(jié)課學(xué)生的動(dòng)手操作要求較高,需要學(xué)生在練習(xí)本上畫(huà)圖;這節(jié)課從教學(xué)過(guò)程看,邏輯行強(qiáng),過(guò)渡比較自然,幻燈片制作精美,特別是幾何畫(huà)板的控件,讓學(xué)生能夠直觀看到圖像的變化趨勢(shì),還有電子白板的靈活運(yùn)用,可以使用新建屏幕頁(yè),讓學(xué)生看到我們老師如何操作,給學(xué)生示范。
當(dāng)然,在教學(xué)中也存在一些問(wèn)題:前面復(fù)習(xí)回顧的內(nèi)容用時(shí)過(guò)多,導(dǎo)致后面的時(shí)間有些緊,例題可以講一個(gè)詳細(xì)的,后面讓學(xué)生完成;正弦函數(shù)的圖像分析透徹之后,對(duì)于余弦函數(shù)可以略講。
【正弦函數(shù)、余弦函數(shù)圖像教案】相關(guān)文章:
一次函數(shù)圖像教學(xué)反思02-19
二次函數(shù)教案07-28
《正比例函數(shù)》教案02-14
函數(shù)概念說(shuō)課稿07-18
函數(shù)教學(xué)反思02-23
二次函數(shù)教案15篇02-20
函數(shù)的自我鑒定03-02
函數(shù)的概念教學(xué)反思06-08