二次函數(shù)教學(xué)反思
作為一位剛到崗的教師,教學(xué)是重要的工作之一,借助教學(xué)反思我們可以學(xué)習(xí)到很多講課技巧,怎樣寫教學(xué)反思才更能起到其作用呢?以下是小編精心整理的二次函數(shù)教學(xué)反思,希望能夠幫助到大家。
二次函數(shù)教學(xué)反思1
這節(jié)課是人教版九年級數(shù)學(xué)下冊的一節(jié)探究課。在教學(xué)中我采用了體驗(yàn)探究的教學(xué)方式,在教師的配合引導(dǎo)下,讓學(xué)生自己動手作圖,觀察、歸納出二次函數(shù)的性質(zhì),體驗(yàn)知識的形成過程,力求體現(xiàn)"主體參與、自主探索、合作交流、指導(dǎo)引探"的教學(xué)理念。
整個教學(xué)過程主要分為三部分:
第一部分是前置性作業(yè),前置作業(yè)是前一天發(fā)給學(xué)生的,主要涉及如何作圖、一次函數(shù)和反比例函數(shù)的性質(zhì)等問題。我的設(shè)計(jì)目的是讓學(xué)生在復(fù)習(xí)這些知識的過程中體會從函數(shù)圖像來研究函數(shù)性質(zhì)。應(yīng)該說這樣設(shè)計(jì)既讓學(xué)生復(fù)習(xí)了舊知又使他們體會到如何研究函數(shù),從哪些方面研究函數(shù),從思維層面鍛煉了學(xué)生的探究能力。
第二部分是學(xué)習(xí)探究,探求活動前先讓一名學(xué)生讀了學(xué)習(xí)目標(biāo),讓大家?guī)е繕?biāo)去探究。探究活動一是讓學(xué)生在坐標(biāo)紙上畫出二次函數(shù)y=ax2的圖象。畫圖的過程包括列表、描點(diǎn)、連線。列表過程是我引導(dǎo)學(xué)生取點(diǎn)的,其間我引導(dǎo)大家要明確取點(diǎn)注意的事項(xiàng),比如代表性、易操作性。這樣學(xué)生在下一個環(huán)節(jié)就能游刃有余。學(xué)生在我的引導(dǎo)下順利地畫出了函數(shù)的圖象。緊接著我讓學(xué)生按照學(xué)案的要求自主探討當(dāng)a>0時函數(shù)y=ax2的性質(zhì)。探究活動二是獨(dú)立畫出函數(shù)y=ax2的圖象,然后是自主探討當(dāng)a<0時函數(shù)y=ax2的性質(zhì)。探討函數(shù)的性質(zhì)主要從開口方向、對稱軸、增減性、頂點(diǎn)坐標(biāo)和最值方面入手,讓學(xué)生從特殊函數(shù)來歸納總結(jié)一般函數(shù)的性質(zhì)。應(yīng)該說探究活動二在活動一的基礎(chǔ)上讓學(xué)生鍛煉了自我學(xué)習(xí)的能力,學(xué)生們完成的很好。探索活動三是小組合作活動。觀察自己畫出的兩個圖象,它們代表函數(shù) y=ax2的兩種情況,找出a的符號不同時他們的相同點(diǎn)、不同點(diǎn)和聯(lián)系點(diǎn)。這個環(huán)節(jié)能充分發(fā)揮小組合作的優(yōu)勢,讓學(xué)生在談?wù)撝畜w會分類思想。小組討論完畢后我讓學(xué)生展示他們的成果,大部分學(xué)生躍躍欲試,他們討論的很全面,出乎我的預(yù)料。這里面還有個知識點(diǎn)我是用幾何畫板演示的,就是通過改變a的值讓學(xué)生們觀察圖象的開口方向和開口寬度。幾何畫板在此起到了突破難點(diǎn)的作用,讓我真正體會到了掌握幾何畫板對自己的教學(xué)是多么的有利。第三部分是課堂檢測。最后五分鐘時我讓學(xué)生們獨(dú)立完成課堂檢測部分題目。課堂檢測共出了四個小題(基礎(chǔ)題)一個應(yīng)用題(選做題),下課鈴聲響了,大部分的同學(xué)還沒有完成選做題,所以我就讓同桌交換試卷,公布前四個基礎(chǔ)題的答案。從當(dāng)堂的反饋來看,絕大多數(shù)同學(xué)能掌握本節(jié)課的知識,達(dá)到了學(xué)習(xí)目標(biāo)中的要求。
本課的優(yōu)點(diǎn)主要包括:
1、教態(tài)自然,能注重身體語言的作用,聲音洪亮,提問具有啟發(fā)性。
2、教學(xué)目標(biāo)明確、思路清晰,注重學(xué)生的自我學(xué)習(xí)培養(yǎng)和小組合作學(xué)習(xí)的落實(shí)。
3、能運(yùn)用現(xiàn)代化的教學(xué)手段教學(xué),尤其是能用幾何畫板等軟件突破重難點(diǎn)。
本課的不足之處表現(xiàn)在:
1、知識的生成過程體現(xiàn)的不夠具體。在活動一中,雖然引導(dǎo)學(xué)生選點(diǎn)和列表,但是沒有在黑板上演示作圖的過程,雖然說明白了選點(diǎn)的注意事項(xiàng)但是學(xué)生還是被動的接受,他們不一定能理解為什么要選那個點(diǎn)。
2、作圖的過程沒必要放到課堂上來?梢允孪仍谇爸米鳂I(yè)中讓學(xué)生作圖,在課堂上讓學(xué)生匯報作圖中遇到的困難,這樣教師再去訂正,效果要好很多。有時候就是要讓學(xué)生經(jīng)歷“錯誤”的過程,這樣他們才會懂。正所謂“我聽到的,我會忘記;我見到的,我會記住;我做過的,我會理解
3、課堂上講的太多。有些過程,讓學(xué)生自主觀察總結(jié)是完全能收到好的效果的,但是我都替學(xué)生總結(jié)了,學(xué)生還是被動的接受。其實(shí)這還是思想的.問題,說明我沒有真的放開手。真正讓學(xué)生有了空間,他們也會給我們很大的驚喜。
4、學(xué)生在回答問題的過程中我老是打斷學(xué)生。提問一個問題,學(xué)生說了一半,我就迫不及待地引導(dǎo)他說出下一半,有的時候是我替學(xué)生說了,這樣學(xué)生的思路就被我打斷了。破壞學(xué)生的思路是我們教師最大的毛病,此頑疾不除,教學(xué)質(zhì)量難以保證。
5、合作學(xué)習(xí)的有效性不夠。其實(shí)在演示幾何畫板的過程中,學(xué)生在a>0的情況下能得到a越大開口越小,a<0的情況下a越小開口越大。但是綜合起來學(xué)生就困難的多了。這個時候不妨讓大家小組討論完成知識的總結(jié)。有這樣一種說法:你我各一個蘋果,交換之后,你我還是一個蘋果;你我各有一種思想,交換之后,你我卻有了兩種思想。這很形象地說出了合作學(xué)習(xí)的好處。教師把學(xué)習(xí)的主動權(quán)交給學(xué)生,把思維的過程還給學(xué)生,問題在分組討論中得以共同解決。只有真正把自主、探究、合作的學(xué)習(xí)方式落到實(shí)處,才能培養(yǎng)學(xué)生成為既有創(chuàng)新能力,又能適應(yīng)現(xiàn)代社會發(fā)展的公民。
二次函數(shù)教學(xué)反思2
二次函數(shù)對學(xué)生來講,既是難點(diǎn)又是重點(diǎn),通過我對這一章的教學(xué),讓我學(xué)到很多道理和教學(xué)方法。下面是我對二次函數(shù)的復(fù)習(xí)課的一些反思感受:
首先,我認(rèn)為在課堂上,我對知識的掌握還是有一定的欠缺,把二次函數(shù)用自己的眼光和感受想象的太簡單,但是對于學(xué)生而言,這又是一個重點(diǎn),尤其是一個難點(diǎn)。所以我課堂上有的習(xí)題深度沒有掌握好,沒有做到面向全體。
其次,本節(jié)課體現(xiàn)的是分層教學(xué),而我只是在后面的比賽中簡單的體現(xiàn)分層,對于提問中得分層,習(xí)題中的分層還是做的不夠好,這說明我對于分層教學(xué)的這種方法還是有待于進(jìn)一步的提高,應(yīng)該真正的站在學(xué)生的角度來分層。
第三,課堂上的語言不夠精辟,尤其是評價性的話語很少,很單調(diào)。沒有做到讓學(xué)生為我的一句話而振奮,沒有因?yàn)闉榱藸幍梦业囊痪湓挾煤米鲱}等等,這是我一直以來欠缺的一個重要點(diǎn)。
那么針對以上幾點(diǎn),我從自己的角度思考,收獲了以下這些:
1.上課之前一定要反復(fù)的推敲,琢磨課本,找出本節(jié)課知識的“靈魂”,然后站在學(xué)生的角度,仔細(xì)研究,如何講授學(xué)生們才能愿意聽,才能聽得明白。尤其不能把學(xué)生想像的水平很高,不是不自信,而是不能把學(xué)生逼到“危險之地”,以免打擊自尊心,熄滅剛剛點(diǎn)燃的興趣之光。真正做到“低起點(diǎn)”。
2.既然選擇和實(shí)施了分層教學(xué),就應(yīng)該多下功夫去琢磨,去進(jìn)行它。既然是分層就應(yīng)該把它做到“順其自然”,而不僅僅是一種形式。在分層的'同時應(yīng)該找到一個點(diǎn),就是說,這個點(diǎn)上的問題是承上啟下的,是應(yīng)該全班都能夠掌握的。對于尖子生,不能在課堂上想讓他們吃飽,對于他們應(yīng)該在課下,或者是采用小紙條的方法單獨(dú)來測試,不能為了他們的能力把題目難度定的過高。再者,分層應(yīng)該體現(xiàn)在一節(jié)課的所有環(huán)節(jié),例如,在提問時,對于一個問題應(yīng)該分層次來提,來回答。
3.應(yīng)該及時地,迅速的提高自己的言語水平。
一堂課的精彩與否,教師的課堂語言也是很重要的一個方面,例如一節(jié)課的講授過程,或者是對于學(xué)生的評價等等。
督促自己多讀書,多練習(xí),以豐富自己的語言。
4.最后,我覺得自己真的需要多學(xué)習(xí),多見識,這樣才能提高,才能迅速的提高。對于自己的優(yōu)勢,我也看到了,那就是我的教學(xué)之路很長,很多方法,很多思路都有時間,有條件去嘗試,所以在以后的工作中要多動腦,多為學(xué)生著想。
俗話說“天下無難事,只怕有心人”,所以只要我認(rèn)真的付出,認(rèn)真的思考,我想我的明天會是美好的。
二次函數(shù)教學(xué)反思3
這節(jié)課明顯是要讓學(xué)生明白什么是二次函數(shù),能區(qū)別二次函數(shù)與其他函數(shù)的不同,能深刻理解二次函數(shù)的一般形式,并能初步理解實(shí)際問題中對定義域的限制。通過學(xué)生的討論,解決了自己不能解決的問題,拓展應(yīng)用題通過學(xué)生的展示講解讓大部分學(xué)生基本掌握,使學(xué)生在原有知識的儲備基礎(chǔ)上很容易遷移和接受了這些知識.這節(jié)課的重點(diǎn)內(nèi)容放在“經(jīng)歷探索和表示二次函數(shù)關(guān)系的過程,使學(xué)生獲得了用二次函數(shù)表示變量之間關(guān)系的體驗(yàn)。
在教學(xué)中我采用了體驗(yàn)探究的教學(xué)方式,在教師的配合引導(dǎo)下,讓學(xué)生自己動手作圖,觀察、歸納出二次函數(shù)的性質(zhì),體驗(yàn)知識的形成過程,力求體現(xiàn)"主體參與、自主探索、合作交流、指導(dǎo)引探"的教學(xué)理念。整個教學(xué)過程主要分為三部分:第一部分是前置性作業(yè),前置作業(yè)是前一天發(fā)給學(xué)生的,主要涉及如何作圖、一次函數(shù)和反比例函數(shù)的.性質(zhì)等問題。我的設(shè)計(jì)目的就上讓學(xué)生在復(fù)習(xí)這些知識的過程中體會從函數(shù)圖像來研究函數(shù)性質(zhì)的。應(yīng)該說這樣設(shè)計(jì)既讓初四同學(xué)復(fù)習(xí)了舊知又使他們體會到如何研究函數(shù),從哪些方面研究函數(shù),從思維層面鍛煉了學(xué)生的探究能力。第二部分是學(xué)習(xí)探究,探求活動前先讓一名同學(xué)讀了學(xué)習(xí)目標(biāo),讓大家?guī)е繕?biāo)去探究。
整節(jié)課的流程可以這樣概括:學(xué)生討論問題——學(xué)生展示重點(diǎn)內(nèi)容——完善訓(xùn)練題討論實(shí)際問題對自變量的限制——課堂的小結(jié),最關(guān)鍵的是我認(rèn)為這符合學(xué)生的基本認(rèn)知規(guī)律,是容易讓學(xué)生理解和接受的。
對于實(shí)際問題的選擇,我將4個問題整和于同一個實(shí)際背景下,這樣設(shè)計(jì)既能引起學(xué)生興趣,也盡量減少學(xué)生審題的時間,顯得非常有層次性,這些實(shí)際問題貫穿整個課堂的始終,使整個課堂有渾然天成的感覺。
對于練習(xí)的設(shè)計(jì),仍然采取了不重復(fù)的原則性,盡量做到每題針對一個問題,并進(jìn)行及時的小結(jié),也遵循了從開放到封閉的原則,達(dá)到了良好的效果。
二次函數(shù)教學(xué)反思4
教材分析:
本節(jié)課在二次函數(shù)y=ax2和y=ax2+c的基礎(chǔ)上,進(jìn)一步研究y=a(x-h)2和y=a(x-h)2+k的圖象,并探索它們之間的關(guān)系和各自性質(zhì)。旨在全面掌握所有二次函數(shù)的圖象和性質(zhì)的變化情況。同時對二次函數(shù)的研究,經(jīng)歷了從簡單到復(fù)雜,從特殊到一般的過程:先從y=x2開始,然后是y=ax2,y=ax2+c,最后是y=a(x-h)2,y=a(x-h)2+k,y=ax2+bx+c。符合學(xué)生的認(rèn)知規(guī)律,體會建立二次函數(shù)對稱軸和頂點(diǎn)坐標(biāo)公式的必要性。
教學(xué)片段:
本節(jié)課我是這樣設(shè)計(jì)引入的。
[師] y=3x2的圖象有何特點(diǎn)?
[生]很快能說出函數(shù)圖象以及相關(guān)的性質(zhì)。
[師]y=3x2+5的圖象有何特點(diǎn)? y=3x2+5和y=3x2的圖象有何關(guān)系?
此處的安排是為了讓學(xué)生明確加上5會使函數(shù)圖象向上平移5個單位,為本節(jié)教學(xué)y=a(x-h)2和y=a(x-h)2+k的位置關(guān)系埋下伏筆。當(dāng)然在前一節(jié)課已經(jīng)讓學(xué)生明確了y=ax2和y=ax2+c的位置關(guān)系。并告訴學(xué)生口訣上加下減,位變形不變。
[師]y=3x2-6x+5的圖象與y=3x2有何關(guān)系?
[生]猜想:向上平移5個單位,向左右平移6個單位。
[師]到底向左還是向右?或者是否就是我們所想的這樣先向上平移5個單位,向左右平移6個單位?我們這節(jié)課就來研究二次函數(shù)y=ax2+bx+c的圖象(板書課題)
教師和學(xué)生一起對y=3x2-6x+5進(jìn)行配方化為y=3(x-1)2+2的形式。
此處的處理感覺很不自然,但是從y=3x2-6x+5再引出新課這一作法又讓我不舍得放棄,希望行家提出好的過渡方法。
[師]研究y=3(x-1)2+2的圖象比較復(fù)雜,你準(zhǔn)備先研究什么函數(shù)的圖象?
[生]可以先研究y=3(x-1)2的圖象。
前面復(fù)習(xí)過y=ax2和y=ax2+c的位置關(guān)系,而且經(jīng)過課題學(xué)習(xí)學(xué)生已經(jīng)學(xué)會了把復(fù)雜問題通過先簡單化的這一學(xué)習(xí)方式。
讓學(xué)生完成課本P46的表格。
在校對答案時我是這樣處理的。先讓校對3x2的`值,然后再填寫3(x-1)2的值,但并不是全部校對,在回答到x=-1時,y=12時,停頓。讓學(xué)生不急著給出下面的答案,先讓學(xué)生思考從表格中發(fā)現(xiàn)了什么,學(xué)生很快的發(fā)現(xiàn)第三排的值剛好是把第二排的值向右平移一個單位。由此猜想當(dāng)x=0時,y=3。然后引導(dǎo)學(xué)生驗(yàn)算。發(fā)現(xiàn)剛好相等。繼續(xù)完成表格的第三排的函數(shù)值,發(fā)現(xiàn)都有相同的特點(diǎn)。
此處的設(shè)計(jì)是要讓學(xué)生學(xué)會觀察,從表格里發(fā)現(xiàn)函數(shù)圖象的平移。
[師]根據(jù)表格所提供的坐標(biāo),大家去猜想y=3(x-1)2與y=3x2的圖象有何關(guān)系?
[生]猜想:把y=3x2圖象向右平移一個單位就可以得到y(tǒng)=3(x-1)2的函數(shù)圖象。
[師]請大家根據(jù)表格所提供的坐標(biāo)描點(diǎn)、連線,完成y=3(x-1)2的函數(shù)圖象?磁c我們的猜想是否一樣。
通過學(xué)生的描點(diǎn)、連線、并觀察發(fā)現(xiàn)確實(shí)符合自己的猜想。經(jīng)歷這樣的研究過程學(xué)生能形成較為深刻的印象。
教師進(jìn)行對比教學(xué)。繼續(xù)研究了y=3(x+1)2與y=3x2的圖象位置關(guān)系。進(jìn)而研究他們的圖象的性質(zhì),然后再研究了y=3(x-1)2+2與y=3x2和y=3(x-1)2三者的聯(lián)系和區(qū)別?偨Y(jié)出口訣上左加下右減,位變形不變便于學(xué)生記憶。
反思:
函數(shù)的教學(xué),尤其是二次函數(shù)是學(xué)生普遍感覺較為抽象難懂的知識。在教學(xué)過程中,除了讓學(xué)生多動手畫圖象,加深學(xué)生對函數(shù)圖象的了解,加深他們對函數(shù)性質(zhì)的了解外。更重要的是讓學(xué)生參與到函數(shù)圖象和性質(zhì)的探索中去。要利用一切可以利用的材料來幫助學(xué)生理解所學(xué)的知識。本節(jié)中通過表格上函數(shù)值的變化讓學(xué)生猜想函數(shù)圖象的位置變化,給學(xué)生留下較深刻的印象。然后加以口訣的形式,學(xué)生普遍能較好的掌握圖象的平移規(guī)律。
二次函數(shù)教學(xué)反思5
本節(jié)的學(xué)習(xí)內(nèi)容是在前面學(xué)過二次函數(shù)的概念和二次函數(shù)y=ax2、y=ax2+h、y=a(x-h)2的圖像和性質(zhì)的基礎(chǔ)上,運(yùn)用圖像變換的觀點(diǎn)把二次函數(shù)y=ax2的圖像經(jīng)過一定的平移變換,而得到二次函數(shù)y=a(x-h)2+k (h≠0,k≠0)的圖像。二次函數(shù)是初中階段所學(xué)的最后一類最重要、圖像性質(zhì)最復(fù)雜、應(yīng)用難度最大的函數(shù),是學(xué)業(yè)達(dá)標(biāo)考試中的重要考查內(nèi)容之一。教材中主要運(yùn)用數(shù)形結(jié)合的方法從學(xué)生熟悉的知識入手進(jìn)行知識探究。這是教學(xué)發(fā)現(xiàn)與學(xué)習(xí)的常用方法,同學(xué)們應(yīng)注意學(xué)習(xí)和運(yùn)用。另外,在本節(jié)內(nèi)容學(xué)習(xí)中同學(xué)們還要注意 “類比”前幾節(jié)的內(nèi)容學(xué)習(xí),在對比中加強(qiáng)聯(lián)系和區(qū)別,從而更深刻的體會二次函數(shù)的圖像和性質(zhì)。
通過本節(jié)課教學(xué),得出幾點(diǎn)體會:
1、在教學(xué)中二次函數(shù)圖像的對稱軸,頂點(diǎn)坐標(biāo),開口方向尤其重要,必需特別強(qiáng)調(diào)。
2、在探究中要積累研究問題的方法并積累經(jīng)驗(yàn),學(xué)生在前面已經(jīng)歷過探索、分析和建立兩個變量之間的關(guān)系的'過程,學(xué)習(xí)了一次函數(shù)和反比例函數(shù),學(xué)會了用描點(diǎn)法作函數(shù)圖象并據(jù)此分析得出函數(shù)的性質(zhì)。我們可以把研究這些問題的方法應(yīng)用于研究二次函數(shù)的圖象和性質(zhì),并據(jù)此形成研究問題的基本方法。
3、要使課堂真正成為學(xué)生展示自我的舞臺。
還學(xué)生課堂學(xué)習(xí)的主體地位,教師要把激發(fā)學(xué)生學(xué)習(xí)熱情和獲得學(xué)習(xí)能力放在教學(xué)首位,為學(xué)生提供展示自己聰明才智的機(jī)會,使課
堂真正成為學(xué)生展示自我的舞臺。充分利用合作交流的形式,能使教師發(fā)現(xiàn)學(xué)生分析問題解決問題的獨(dú)到見解以及思維的誤區(qū),以便指導(dǎo)今后的教學(xué)。但在復(fù)習(xí)與練習(xí)的過程中,我發(fā)現(xiàn)學(xué)生存在著這樣幾個問題。
1、某些記憶性的知識沒記住。
2、學(xué)生稍遇到點(diǎn)難題就失去做下去的信心。題目較長時就不愿意仔細(xì)讀,從而失去讀下去的勇氣
3、學(xué)生的識圖能力、讀題能力與分析問題、解決問題的能力較弱。
4、解題過程寫得不全面,丟三落四的現(xiàn)象嚴(yán)重。
針對上述問題,需要采取的措施與方法是:
1、根據(jù)實(shí)際情況,對于中考升學(xué)有希望的學(xué)生利用課余時間做好他們的思想工作。并對他們進(jìn)行面對面的單獨(dú)輔導(dǎo),增強(qiáng)他們的自信心,以此來提高他們的數(shù)學(xué)成績。
2、結(jié)合自己的學(xué)習(xí)經(jīng)驗(yàn)對他們進(jìn)行學(xué)法指導(dǎo)和解題技巧的指導(dǎo)。
3、根據(jù)不同的學(xué)生情況,搜集典型題讓他們單獨(dú)做,并給予及時的輔導(dǎo)與矯正。
4、與其它任課教師聯(lián)手一起想對策,指導(dǎo)學(xué)生讀題的方法與分析問題,解決問題的方法。
5、無論是做練習(xí)還是考試之前,都告訴學(xué)生要認(rèn)真仔細(xì)的讀題,從圖形中獲取信息。
二次函數(shù)教學(xué)反思6
這節(jié)課是安排在學(xué)了一次函數(shù)、反比例、一元二次方程之后的二次函數(shù)的第一節(jié)課,學(xué)習(xí)目標(biāo)是要學(xué)生懂得二次函數(shù)概念,能分辨二次函數(shù)與其他函數(shù)的不同,能理解二次函數(shù)的一般形式,并能初步理解實(shí)際問題中對自變量的取值范圍的限制。依我看,這節(jié)課的重點(diǎn)該放在“經(jīng)歷探索和表示二次函數(shù)關(guān)系的過程,獲得用二次函數(shù)表示變量之間關(guān)系的體驗(yàn),從而形成定義”上。一上完這節(jié)課后就有所感觸:
1、二次函數(shù)是一種常見的函數(shù),應(yīng)用非常廣泛,它是客觀地反映現(xiàn)實(shí)世界中變量之間的數(shù)量關(guān)系和變化規(guī)律的一種非常重要的數(shù)學(xué)模型。許多實(shí)際問題往往可以歸結(jié)為二次函數(shù)加以研究。
2、教學(xué)要重視概念的形成和建構(gòu),在概念的學(xué)習(xí)過程中,從豐富的`現(xiàn)實(shí)背景和學(xué)生感興趣的問題出發(fā),通過學(xué)生之間的合作與交流的探究性活動,引導(dǎo)分析實(shí)際問題,如探究面積問題,利息問題、觀察表格找規(guī)律及用關(guān)系式表示這些關(guān)系的過程,引出二次函數(shù)的概念,使學(xué)生感受二次函數(shù)與生活的密切聯(lián)系。
3、課堂教學(xué)要求老師除了深入備好課外,還要懂得根據(jù)學(xué)生反饋來適時變通,組織學(xué)生討論時該放則放,該收則收,合理使用好課堂45分鐘,盡可能把課堂還給學(xué)生。
我覺得在教學(xué)中,只光熱情還不夠,沒有積極調(diào)動學(xué)生的學(xué)習(xí)熱情,感染力不足。今后備課時要重視創(chuàng)設(shè)豐富而風(fēng)趣的語言,來調(diào)動學(xué)生的積極性?傊,在數(shù)學(xué)教學(xué)中不但要善于設(shè)疑置難,激發(fā)學(xué)生的學(xué)習(xí)熱情,同時要加強(qiáng)學(xué)生自學(xué)能力的培養(yǎng),而且要理論聯(lián)系實(shí)際,只有這樣,才會吸引學(xué)生對數(shù)學(xué)學(xué)科的熱愛。
二次函數(shù)教學(xué)反思7
1.注重知識的發(fā)生過程與思想方法的應(yīng)用
《用函數(shù)的觀點(diǎn)看一元二次方程》內(nèi)容比較多,而課時安排只一節(jié),為了在一節(jié)課的時間里更有效地突出重點(diǎn),突破難點(diǎn),按照學(xué)生的認(rèn)知規(guī)律遵循教師為主導(dǎo)、學(xué)生為主體的指導(dǎo)思想,本節(jié)課給學(xué)生布置的預(yù)習(xí)作業(yè),從學(xué)生已有的經(jīng)驗(yàn)出發(fā)引發(fā)學(xué)生觀察、分析、類比、聯(lián)想、歸納、總結(jié)獲得新的知識,讓學(xué)生充分感受知識的產(chǎn)生和發(fā)展過程,使學(xué)生始終處于積極的思維狀態(tài)中,對新的知識的獲得覺得不意外,讓學(xué)生“跳一跳就可以摘到桃子”。
探究拋物線交x軸的點(diǎn)的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系及其應(yīng)用的過程中,引導(dǎo)學(xué)生觀察圖形,從圖象與x軸交點(diǎn)的個數(shù)與方程的根之間進(jìn)行分析、猜想、歸納、總結(jié),這是重要的數(shù)學(xué)中數(shù)形結(jié)合的思想方法,在整個教學(xué)過程中始終貫穿的是類比思想方法。這些方法的使用對學(xué)生良好思維品質(zhì)的形成有重要的作用,對學(xué)生的終身發(fā)展也有一定的作用。
2.關(guān)注學(xué)生學(xué)習(xí)的過程
在教學(xué)過程中,教師作為引導(dǎo)者,為學(xué)生創(chuàng)設(shè)問題情境、提供問題串、給學(xué)生提供廣闊的思考空間、活動空間、為學(xué)生搭建自主學(xué)習(xí)的平臺;學(xué)生則在老師的指導(dǎo)下經(jīng)歷操作、實(shí)踐、思考、交流、合作的過程,其知識的形成和能力的培養(yǎng)相伴而行,創(chuàng)造“海闊憑魚躍,天高任鳥飛”的課堂境界。
3.強(qiáng)化行為反思
“反思是數(shù)學(xué)的重要活動,是數(shù)學(xué)活動的核心和動力”,本節(jié)課在教學(xué)過程中始終融入反思的環(huán)節(jié),用問題的設(shè)計(jì),課堂小結(jié),課后的數(shù)學(xué)日記等方式引發(fā)學(xué)生反思,使學(xué)生在掌握知識的`同時,領(lǐng)悟解決問題的策略,積累學(xué)習(xí)方法。說到數(shù)學(xué)日記,“數(shù)學(xué)日記”就是學(xué)生以日記的形式,記述學(xué)生在數(shù)學(xué)學(xué)習(xí)和應(yīng)用過程中的感受與體會。通過日記的方式,學(xué)生可以對他所學(xué)的數(shù)學(xué)內(nèi)容進(jìn)行總結(jié),寫出自己的收獲與困惑!皵(shù)學(xué)日記”該如何寫,寫什么呢?開始摸索寫數(shù)學(xué)日記的時候,我根據(jù)課程標(biāo)準(zhǔn)的內(nèi)容給學(xué)生提出寫數(shù)學(xué)日記的簡單模式:日記參考格式:課題;所涉及的重要數(shù)學(xué)概念或規(guī)律;理解得最好的地方;不明白的或還需要進(jìn)一步理解的地方;所涉及的數(shù)學(xué)思想方法;所學(xué)內(nèi)容能否應(yīng)用在日常生活中,舉例說明。通過這兩年的摸索,我把數(shù)學(xué)日記大致分為:課堂日記、復(fù)習(xí)日記、錯題日記。
4.優(yōu)化作業(yè)設(shè)計(jì)
作業(yè)的設(shè)計(jì)分必做題和選做題,必做題鞏固本課基礎(chǔ)知識,基本要求;選做題屬于拓廣探索題目,培養(yǎng)學(xué)生的創(chuàng)新能力和實(shí)踐能力!度私贪婢拍昙墧(shù)學(xué)下冊。
二次函數(shù)教學(xué)反思8
這節(jié)課,我對教材進(jìn)行了探究性重組,同時放手讓學(xué)生在探究活動中去經(jīng)歷、體驗(yàn)、內(nèi)化知識的做法是成功的。通過充分的過程探究,學(xué)生容易得出也是最早得出了圖象的性質(zhì),借助直觀圖象的性質(zhì)而得到二次函數(shù)的性質(zhì);ㄙM(fèi)了一番周折,說明去掉這個中介,直接讓學(xué)生從單調(diào)性來接受二次函數(shù)性質(zhì)是困難的。
真正的形成往往來源于真實(shí)的自主探究。只有放手探究,學(xué)生的潛力與智慧才會充分表現(xiàn),學(xué)生也才會表現(xiàn)真實(shí)的思維和真實(shí)的自我。在新課程理念的指導(dǎo)下,我們的一切教學(xué)都要圍繞學(xué)生的成長與發(fā)展做文章,真正讓學(xué)生理解、掌握真實(shí)的知識和真正的知識。
首先,要設(shè)計(jì)適合學(xué)生探究的.素材。教材對二次函數(shù)的性質(zhì)是從增減來描述的,我們認(rèn)為這種對性質(zhì)的表述是教條化的,對這種學(xué)術(shù)、文本狀態(tài)的知識,學(xué)生不容易接受。當(dāng)然教材強(qiáng)調(diào)所呈現(xiàn)內(nèi)容的邏輯性、嚴(yán)密性與科學(xué)性是合理的。但是能讓學(xué)生理解和接受的知識才是最好的。如果牽強(qiáng)的引出來,不一定是好事。
其次,探究教學(xué)的過程就是實(shí)現(xiàn)學(xué)術(shù)形態(tài)的知識轉(zhuǎn)化為教育形態(tài)知識的過程。探究教學(xué)是追求教學(xué)過程的探究和探究過程的自然和本真。只有這樣探究才是有價值的,真知才會有生長性。要表現(xiàn)過程的真實(shí)與自然,從建構(gòu)主義的觀點(diǎn)出發(fā),就是要尊重學(xué)生各自的經(jīng)驗(yàn)與思維方式、習(xí)慣。結(jié)論是一致的,但過程可以是多元的,教師要善于恰倒好處地優(yōu)化提煉學(xué)生的結(jié)論。追求自然,就要適當(dāng)放開學(xué)生的手、口、腦,例如本文中的“走向”問題,“向上爬”、“向下走”等,如果是講授注入式,我們就聽不到學(xué)生真實(shí)的聲音了。
最后,教師在學(xué)生探究真知之旅上應(yīng)是一個促進(jìn)者、協(xié)作者、組織者。要做善于點(diǎn)燃學(xué)生探究欲望和智慧火把的人,要善于讓學(xué)生說教師要說的話,做教師想做的事,這就是一個成功的促進(jìn)者。數(shù)學(xué)教學(xué)的過程是師生共同活動、共同成長與發(fā)展的過程。
二次函數(shù)教學(xué)反思9
本課是二次函數(shù)的圖像和性質(zhì)發(fā)展的必然結(jié)果,實(shí)現(xiàn)了與前面二次函數(shù)定義的呼應(yīng),使學(xué)生心中的困惑得到了最終的解釋,通過圖像和配方描述一般形式的二次函數(shù)的性質(zhì)是本課的重點(diǎn),最終達(dá)到不同二次函數(shù)表達(dá)式融會貫通,學(xué)習(xí)本課的基礎(chǔ)在于對一元二次方程配方法和對形如頂點(diǎn)式的函數(shù)圖像與性質(zhì)的熟練掌握,縱觀整個課堂及效果,我覺得有以下兩個好的方面值得繼續(xù)保持。
1、夯實(shí)了本課學(xué)習(xí)的基礎(chǔ)。從一元二次方程配方的回顧學(xué)習(xí)到頂點(diǎn)式函數(shù)圖像性質(zhì)的回顧研究入手,為二次函數(shù)一般形式的圖像性質(zhì)研究奠定了基礎(chǔ),為本課的順利進(jìn)行提供了保障。
2、本節(jié)課我注重學(xué)生探索中發(fā)現(xiàn)規(guī)律,培養(yǎng)學(xué)生歸納總結(jié)知識的習(xí)慣,這樣調(diào)動了學(xué)生學(xué)習(xí)的積極性,體現(xiàn)了學(xué)生的主體地位,整潔課堂學(xué)生都參與其中,檢測的效果也很好,有這樣一句話:“沒有學(xué)生的課堂,講的再精彩也是徒勞”,但是這節(jié)課我個人感覺學(xué)生都在課堂,幾個例題難度適中,學(xué)生通過配方準(zhǔn)確無誤的找出了對稱軸、寫出了頂點(diǎn)坐標(biāo)。
一堂精彩的課堂是教不出優(yōu)秀的學(xué)生的,只有做到堂堂都能像今天的`課堂這樣的效果,學(xué)生才能學(xué)得輕松,教師才能教的輕松,這才是現(xiàn)代教育提倡的課堂。所以接下來的日子自己備課不但要在知識上下功夫,更多的我想應(yīng)該去備學(xué)生,要在備課之余在自己的心理上一堂課,從中發(fā)現(xiàn)不足,進(jìn)而改進(jìn),力求達(dá)到課堂效果的最優(yōu)化,讓更多的孩子享受學(xué)習(xí)的樂趣,讓他們愿意去學(xué)習(xí)。
二次函數(shù)教學(xué)反思10
函數(shù)是描述現(xiàn)實(shí)世界中變化規(guī)律的數(shù)學(xué)模型。而二次函數(shù)在初中數(shù)學(xué)中占有重要的地位,同時也是高中數(shù)學(xué)學(xué)習(xí)的基礎(chǔ),作為初、高中數(shù)學(xué)銜接的內(nèi)容,二次函數(shù)在中考命題中一直是“重頭戲”,二次函數(shù)和一次函數(shù)的綜合應(yīng)用就成了中考的熱點(diǎn)。這節(jié)課的教學(xué)重點(diǎn)是二次函數(shù)的性質(zhì)和一次函數(shù)的性質(zhì)的靈活運(yùn)用;難點(diǎn)是怎樣建立二次函數(shù)和一次函數(shù)的關(guān)系。
教學(xué)目的及過程:
首先復(fù)習(xí)了二次函數(shù)和一次函數(shù)的有關(guān)基礎(chǔ)知識,二次函數(shù)的定義、開口方向、對稱軸、頂點(diǎn)坐標(biāo)及函數(shù)的增減性。一次函數(shù)的定義、圖像及函數(shù)的增減性。采用特值法的形式檢驗(yàn)學(xué)生的基礎(chǔ)知識掌握情況,采取這樣的方法學(xué)生易懂。
由于本節(jié)課是二次函數(shù)與一次函數(shù)的綜合應(yīng)用問題,重在通過學(xué)習(xí)總結(jié)解決問題的方法,以“啟發(fā)探究式”為主線開展教學(xué)活動。以小組合作探究為主體,使每個學(xué)生都能夠動手動腦參與到課堂活動中,充分調(diào)動學(xué)生學(xué)習(xí)的積極性和主動性,促使學(xué)生能夠理解和建構(gòu)二次函數(shù)與一次函數(shù)的關(guān)系,在建構(gòu)關(guān)系的過程中讓學(xué)生體驗(yàn)從問題出發(fā)到列二元一次方程組的過程,體驗(yàn)用函數(shù)思想去描述、研究量與量之間的關(guān)系,達(dá)到不但使學(xué)生學(xué)會,而且使學(xué)生會學(xué)的目的
例題設(shè)計(jì):
在平面直角坐標(biāo)系x中,過點(diǎn)(0,2)且平行于x軸的直線,與直線=x-1交于點(diǎn)A,點(diǎn)A關(guān)于直線x=1的對稱點(diǎn)為B,拋物線C1:=x2+bx+c經(jīng)過點(diǎn)A,B
(1)求點(diǎn)A,B的坐標(biāo)
。2)求拋物線C1:的表達(dá)式即頂點(diǎn)坐標(biāo)
。3)若拋物線C2:=ax2(a≠0)與線段AB恰有一個公共點(diǎn),結(jié)合函數(shù)圖像,求a取值范圍。
存在的問題:
一、 復(fù)習(xí)過程中才發(fā)現(xiàn)有極少部分中等偏下的學(xué)生記不住拋物線的頂點(diǎn)坐標(biāo)公式,還有的學(xué)生把拋物線的頂點(diǎn)坐標(biāo)和所學(xué)過的一元二次方程求根公式相混淆,發(fā)現(xiàn)有的學(xué)生沒有真正的理解拋物線的頂點(diǎn)坐標(biāo)是怎么推導(dǎo)得來的。
二、 在課堂教學(xué)實(shí)踐中發(fā)現(xiàn),學(xué)生的認(rèn)知和老師的想象是不一樣的',如,在求a取值范圍的時候,百分之九十五的學(xué)生都沉默不語,為什么?
反思:
一、教師既要站在學(xué)生的角度思考問題,也要從教師的角度考慮安排每堂課的整體設(shè)計(jì)。站在學(xué)生角度思考問題,教師就能夠體察學(xué)生的所思所想,了解學(xué)生困惑的根源,教師就可以有針對性的調(diào)整教學(xué)設(shè)計(jì)。如上面中為什么學(xué)生都沉默不語?通過課后了解才知道他們不懂得拋物線=ax2和線段AB有一個交點(diǎn)是一個怎樣的圖像情形。根本原因是教師在備課中忽視了學(xué)生思考水平的現(xiàn)狀和知識儲備情況,導(dǎo)致教師用自己的思考代替了學(xué)生的思考,學(xué)生的思考與實(shí)踐脫節(jié)。這就要求老師要從學(xué)生的實(shí)際出發(fā),了解學(xué)生的學(xué)習(xí)以及思考水平狀況,善于啟發(fā)和引導(dǎo),才能較好的達(dá)到教學(xué)效果。
二、課要精講,題要精練。教師在講課時要抓住每節(jié)課的重點(diǎn),把知識點(diǎn)講透;設(shè)計(jì)習(xí)題時,要緊緊圍繞知識點(diǎn)。除非是綜合訓(xùn)練,忌多而亂。上述問題一就反映了前期基礎(chǔ)知識不扎實(shí)。關(guān)于《二次函數(shù)與一次函數(shù)的綜合應(yīng)用》課中,我共選了三道題,雖然完成了教學(xué)任務(wù),但學(xué)生對每一道題的理解不夠透徹,沒有時間把題拓展,如,拋物線=ax2與線段有兩個交點(diǎn)時,a的取值范圍又怎樣呢?所以,教師既要精講也要帶領(lǐng)學(xué)生精練,把知識點(diǎn)弄透,同時,在教新課前也要在教學(xué)設(shè)計(jì)時把基礎(chǔ)知識復(fù)習(xí)融入到題中,這樣既復(fù)習(xí)了基礎(chǔ)知識又有利于學(xué)生分析和理解,體現(xiàn)了學(xué)生的“最近發(fā)展區(qū)”。
二次函數(shù)教學(xué)反思11
這節(jié)課我是采用先讓學(xué)生按照學(xué)案的提示,自主預(yù)習(xí)課本,受到課本所給出的分析過程的思維限制,很容易把問題解決了,但沒有放手讓學(xué)生從不同角度去嘗試建立坐標(biāo)系,體會各種情況下所建立的坐標(biāo)系是否有利于點(diǎn)的表示,沒有激發(fā)學(xué)生學(xué)習(xí)的熱情,沒有給予學(xué)生以啟迪。用二次函數(shù)知識解決實(shí)際問題是本章學(xué)習(xí)的一大難點(diǎn),遇到實(shí)際問題學(xué)生往往無從下手,學(xué)生在解題過程中遇到一個新的問題該如何去聯(lián)想?聯(lián)想什么?怎樣聯(lián)想?這與課堂教學(xué)過程中老師解題方法的講授至關(guān)重要,老師在課堂教學(xué)過程中應(yīng)如何引導(dǎo)學(xué)生判斷、分析、歸類。為此我在另一個班采取了以下的教學(xué)過程,突出以學(xué)生為主體,教師只是引導(dǎo)學(xué)生經(jīng)歷分析——觀察——抽象——概括——發(fā)現(xiàn)新知——解決新知的過程。為了讓學(xué)生發(fā)現(xiàn)方法、領(lǐng)悟方法、運(yùn)用方法,同時我特意給學(xué)生留有一定的'思考和交流討論的時間。
通過兩節(jié)課的對比,我發(fā)現(xiàn)數(shù)學(xué)的自主學(xué)習(xí),不能千遍一律,應(yīng)針對具體內(nèi)容采取靈活多變的方法。例如一些簡單的計(jì)算的課堂可以先讓學(xué)生自主預(yù)習(xí),獨(dú)立進(jìn)行探究,完成課本上的填空,發(fā)現(xiàn)規(guī)律;然后小組共同歸納,總結(jié)規(guī)律,應(yīng)用規(guī)律學(xué)習(xí)例題,解決問題。一些需要思維的課堂活需要探討的課堂,我認(rèn)為應(yīng)該利用學(xué)案,不讓學(xué)生看課本,教師引導(dǎo)學(xué)生進(jìn)行探究活動,讓學(xué)生自己發(fā)現(xiàn)關(guān)系、規(guī)律?傊?dāng)?shù)學(xué)的自主學(xué)習(xí)課應(yīng)根據(jù)課程內(nèi)容的不同,采取不同的方法,才會收到較好的效果。
二次函數(shù)教學(xué)反思12
二次函數(shù)是一種常見的函數(shù),應(yīng)用非常廣泛,它是客觀地反映現(xiàn)實(shí)世界中變量之間的數(shù)量關(guān)系和變化規(guī)律的一種非常重要的數(shù)學(xué)模型.許多實(shí)際問題往往可以歸結(jié)為二次函數(shù)加以研究.本節(jié)課是學(xué)習(xí)二次函數(shù)的第一節(jié)課,通過實(shí)例引入二次函數(shù)的概念,并學(xué)習(xí)求一些簡單的實(shí)際問題中二次函數(shù)的.解析式和它的定義域.在教學(xué)中要重視二次函數(shù)概念的形成和建構(gòu),在概念的學(xué)習(xí)過程中,讓學(xué)生體驗(yàn)從問題出發(fā)到列二次函數(shù)解析式的過程,體驗(yàn)用函數(shù)思想去描述、研究變量之間變化規(guī)律的意義. 在教學(xué)中,我主要遇到了這樣幾個問題:
1、關(guān)于能夠進(jìn)行整理變?yōu)檎降氖阶有问脚袛嗖粶?zhǔn),主要是我自身對這個概念把握不是很清楚,通過這節(jié)課的教學(xué)過程,和各位老師的幫助知道,真正達(dá)到了教學(xué)相長的效果。
2、在細(xì)節(jié)方面我還有很多的不足,比如,在二次函數(shù)的表示過程中,應(yīng)注意強(qiáng)調(diào)按自變量的降冪排列進(jìn)行整理,這類問題在今后的教學(xué)中,我會注意這些方面的教學(xué)。
3、在變式訓(xùn)練的過程中要注意思考容量和密度以及效度的關(guān)系,注意教學(xué)安排的合理性。另外在教學(xué)語言的精煉方面我還有待加強(qiáng)。
二次函數(shù)教學(xué)反思13
一、成功之處:精心設(shè)計(jì)下,教學(xué)內(nèi)容、教學(xué)環(huán)節(jié)、教學(xué)方法都算完美,在教學(xué)目標(biāo)的制定和教學(xué)重點(diǎn)、難點(diǎn)的把握上也很準(zhǔn)確,在課堂的實(shí)施上,由于采用激勵的方法調(diào)動學(xué)生的積極性和主動性,所以整節(jié)課非常流暢,效果不錯,目標(biāo)的達(dá)成度較高,
二、精彩之處:(一)在探究二:已知二次函數(shù)y=ax2+bx+c(a≠0)圖象的頂點(diǎn)坐標(biāo)為(-1,-6),并且該圖象過點(diǎn)P(2,3),
求這個二次函數(shù)的表達(dá)式中,設(shè)計(jì)了兩個問題:1.通過已知頂點(diǎn)A的坐標(biāo)(-1,-6),你從中還能獲取什么信息?
2.在不改變已知條件的前提下,你能選用“一般式”嗎?
設(shè)計(jì)意圖是:1.由頂點(diǎn)(-1,-6),可知對稱軸是直線x=-1,函數(shù)的最大(小)值是-6.從而得出,當(dāng)已知對稱軸或函數(shù)最值時,仍然選用“頂點(diǎn)式”.
2.挖掘頂點(diǎn)坐標(biāo)的內(nèi)涵:(1)由拋物線的軸對稱性,可求出點(diǎn)P(2,3)關(guān)于對稱
軸x=-1對稱點(diǎn)P’的坐標(biāo)是(-4,3);(2)用點(diǎn)A、點(diǎn)P和對稱軸;(3)用點(diǎn)A、點(diǎn)P和頂點(diǎn)的縱坐標(biāo)等.
3.得出結(jié)論:凡是能用“頂點(diǎn)式”確定的,一定可用“一般式
”確定,進(jìn)一步明確兩種表達(dá)式只是形式的不同和沒有本質(zhì)的區(qū)別;在做題時,不僅會使用已知條件,同時要養(yǎng)成挖掘和運(yùn)用隱含條件的習(xí)慣.
(二)在知識運(yùn)用部分采用猜想、比較、方法選擇等方法引導(dǎo)學(xué)生探究問題,從而大大的提高學(xué)生分析問題、解決問題的能力。內(nèi)容及問題串如下:
1.如圖,.某建筑物采用薄客型屋頂,屋頂?shù)臋M截面形狀為一段拋物線(曲線AOB).它的拱寬AB為6m,拱高CO為0.9m.試建立適當(dāng)?shù)?直角坐標(biāo)系,寫出這段拋物線所對應(yīng)的二次函數(shù)的表達(dá)式.
問題(1)如何建立坐標(biāo)系呢?
問題2:分別選用哪種形式?
問題3:建立坐標(biāo)系后如何將已知條件中的高度、跨度等轉(zhuǎn)化為點(diǎn)的坐標(biāo)呢?
三、遺憾之處:在課題引入后,由于對學(xué)生估計(jì)不足,再加上使用導(dǎo)學(xué)案的習(xí)慣,例題1分析思路后有學(xué)生獨(dú)立完成,這本沒有錯,但是,學(xué)生還習(xí)慣有老師引著做的方法,因此在處理完例1后用時間相對較多,對于后面的教學(xué)造成小的影響,特別是對于探究二的處理時不夠充分,造成一點(diǎn)遺憾。思一,集體的智慧是無窮的,一定繼續(xù)發(fā)揚(yáng)團(tuán)結(jié)協(xié)作的好作風(fēng);反思二,教材的內(nèi)涵是無盡的,一定要挖掘到一定的深廣度;反思三,教師的經(jīng)驗(yàn)是寶貴的,一定要開誠不公的交流;反思四,工作的責(zé)任心是必要的,一定要無私奉獻(xiàn);反思五,教師的工作是高尚的,來不的半點(diǎn)虛假!度私贪婢拍昙墧(shù)學(xué)下冊《確定二次函數(shù)的表達(dá)式》教學(xué)反思》/p><
二次函數(shù)教學(xué)反思14
這節(jié)課在學(xué)習(xí)了二次函數(shù)的基本形式和二次函數(shù)的圖象、頂點(diǎn)坐標(biāo)、對稱軸等性質(zhì)的基礎(chǔ)上來學(xué)習(xí)用二次函數(shù)解決實(shí)際問題。學(xué)生對前面所學(xué)的知識已經(jīng)掌握,但綜合應(yīng)用能力較差。因此在教學(xué)設(shè)計(jì)時將本節(jié)知識分兩課時進(jìn)行,這節(jié)是第一課時,從課堂上學(xué)生的反應(yīng)和課堂練習(xí)可知本節(jié)課教學(xué)效果較好,大部分學(xué)生能準(zhǔn)確分析題意并能寫出函數(shù)關(guān)系式,培養(yǎng)了學(xué)生理論聯(lián)系實(shí)際的能力和分析問題的能力;但在確定自變量的取值范圍和函數(shù)的最值時只有少數(shù)學(xué)習(xí)較好的學(xué)生能準(zhǔn)確解答,這說明稍復(fù)雜的數(shù)量關(guān)系分析是學(xué)生的難點(diǎn),單一的知識應(yīng)用能準(zhǔn)確找到解決途徑,而綜合起來應(yīng)用學(xué)生就有些茫然,無法確定切入點(diǎn)。
本節(jié)課在兩個地方學(xué)生出現(xiàn)疑難:一是分析題意時理不清價格和數(shù)量之間的對應(yīng)關(guān)系;二是不能準(zhǔn)確判斷自變量的取值范圍和函數(shù)的最值。對于這些難點(diǎn)我是這樣處理的.:
首先在回顧了前面的知識點(diǎn)后提出實(shí)際問題:某商品現(xiàn)在的售價為每件60元,每星期可賣出300件。市場調(diào)查反映:如調(diào)整價格,每漲價1元,每星期要少賣出10件;每降價1元,每星期可多賣出20件。已知商品的進(jìn)價為每件40元,如何定價才能使利潤最大?在分析題意時學(xué)生能分清漲價、降價所對應(yīng)的商品銷量,但一小部分學(xué)生依教材上的解題思路不能理解售價和銷量之間的對應(yīng)關(guān)系。對于這個難點(diǎn)我是這樣處理的:設(shè)每漲x個1元,則每件售價為(60+x)元,少賣出10x件,共賣出(300—10x)件;每降價x個1元,則每件售價為(60-x)元,多賣出20x件,共賣出(300+x)件。重點(diǎn)強(qiáng)調(diào)“x個”!雖然在分析中只多了個“每(漲或降)…個1元”,但就這幾個字卻能幫一部分學(xué)生理清關(guān)系和思路,如漲3元8元的問題,則售價為(60+3x)元或(60+8x)元,這樣學(xué)生從最小單元開始分析,逐層遞進(jìn),很容易理清思路找準(zhǔn)關(guān)系。這個關(guān)系弄清了,函數(shù)關(guān)系自然水到渠成就寫出來了。
其次是由函數(shù)解析式確定最大值,而確定最值時必須考慮實(shí)際問題中自變量的取值范圍。在這個問題中x首先是非負(fù)數(shù),同時(300—10x)也是非負(fù)數(shù),所以x大于等于0且小于等于30。結(jié)合函數(shù)解析式y=-10x2+100x+6000可知該函數(shù)圖象開口向下,有最大值。由頂點(diǎn)坐標(biāo)公式可以計(jì)算出當(dāng)x=5時(在自變量的取值范圍內(nèi)),y有最大值,且此時y=6250。強(qiáng)調(diào)此時不僅要考慮頂點(diǎn)坐標(biāo)公式,還要結(jié)合題意看這個x值是否在其取值范圍內(nèi)。x值確定后將其代入就可求出最值y的大小。
從學(xué)生課堂練習(xí)來看,大部分學(xué)生會用這個分析方法解決相應(yīng)問題。雖然這節(jié)課沒能按課時安排學(xué)習(xí)探究二的問題,但學(xué)生能掌握商品漲(降)價與售價、利潤間這類問題的分析并會列函數(shù)關(guān)系也算是一點(diǎn)點(diǎn)收獲了。
二次函數(shù)教學(xué)反思15
二次函數(shù)是初中階段研究的一個具體、重要的函數(shù),在歷年來中考題中都占有較大的分值。二次函數(shù)不僅和學(xué)生前面學(xué)習(xí)的一元二次方程有著密切的聯(lián)系,而且對培養(yǎng)學(xué)生“數(shù)形結(jié)合”的數(shù)學(xué)思想有著重要的作用。而二次函數(shù)的概念是后面學(xué)習(xí)二次函數(shù)的基礎(chǔ),在整個教材體系中起著承上啟下的作用。
本節(jié)課的內(nèi)容是讓學(xué)生理解二次函數(shù)的概念,會判斷一個函數(shù)是否是二次函數(shù),并能夠用二次函數(shù)的一般形式解決實(shí)際問題。為此,先讓學(xué)生復(fù)習(xí)了函數(shù)及一次函數(shù)的相關(guān)內(nèi)容,然后設(shè)計(jì)具體的問題情境讓學(xué)生自己推導(dǎo)出一個二次函數(shù),并觀察、總結(jié)它與一次函數(shù)的不同,在此基礎(chǔ)上逐步歸納出二次函數(shù)的一般表達(dá)式,最后通過習(xí)題鞏固二次函數(shù)的概念并解決一些簡單的數(shù)學(xué)問題。
我個人認(rèn)為,本節(jié)課的成功之處是:一是在教學(xué)設(shè)計(jì)上“步步為營”,學(xué)生的.思維能力“層層提高”。在教學(xué)設(shè)計(jì)上,根據(jù)內(nèi)容的需要,我合理設(shè)計(jì)具有針對性的問題,借助學(xué)生已有的知識展開教學(xué),通過解決問題,充分激發(fā)學(xué)生的求知欲,調(diào)動學(xué)生學(xué)習(xí)的積極性和主動性。
二是在學(xué)習(xí)的過程中,不僅注重對學(xué)生知識的教授,更注重教給學(xué)生學(xué)習(xí)和思考的方法,提高學(xué)生獨(dú)立發(fā)現(xiàn)問題、解決問題的能力,讓學(xué)生時時體驗(yàn)到成功的快樂。
三是在整個教學(xué)過程中,注重不同層次學(xué)生的發(fā)展,不同的學(xué)生的個體差異,再加上受教學(xué)目的等因素的限制,導(dǎo)致一些學(xué)有余力的學(xué)生會感到吃不飽現(xiàn)象,因此在后面的練習(xí)設(shè)計(jì)中,也有針對性的習(xí)題,對這部分學(xué)生提高也是很有幫助的。
不足之處表現(xiàn)在:
1、由于學(xué)生對一次函數(shù)的遺忘,因此復(fù)習(xí)占用的太多的時間,導(dǎo)致課后練習(xí)沒完成。
2、學(xué)生自學(xué)環(huán)節(jié),要求不夠細(xì)致,學(xué)生學(xué)的不夠深入只是看了教材,而未挖掘出教材以外的東西。
3、由于時間緊張小結(jié)的不夠完整。
總之,本節(jié)課的教學(xué),雖取得了一些成績。但也暴露出了許多問題。今后在教學(xué)中我一定吸取教訓(xùn),努力改正自己的不足,提高自己的教學(xué)上水平。
【二次函數(shù)教學(xué)反思】相關(guān)文章:
《二次函數(shù)》教學(xué)反思07-15
初三二次函數(shù)教學(xué)反思04-08
數(shù)學(xué)二次函數(shù)教學(xué)反思04-22
《二次函數(shù)》教學(xué)反思集錦(15篇)07-19
二次函數(shù)的圖像和性質(zhì)教學(xué)反思06-16
函數(shù)教學(xué)反思02-23
二次函數(shù)的說課稿06-22
二次函數(shù)說課稿06-23