《圓柱體積》教學(xué)反思
作為一位剛到崗的人民教師,我們要有一流的教學(xué)能力,通過教學(xué)反思可以有效提升自己的課堂經(jīng)驗,那么教學(xué)反思應(yīng)該怎么寫才合適呢?以下是小編為大家收集的《圓柱體積》教學(xué)反思,歡迎閱讀,希望大家能夠喜歡。
《圓柱體積》教學(xué)反思1
精心研究教材是用好教材的基礎(chǔ) 教材作為教學(xué)的憑借與依據(jù),只不過是編者對學(xué)科知識、國家要求與學(xué)生進(jìn)行整和思考的結(jié)晶。但由于受時間與地域的影響,我們在執(zhí)行教材時不能把它作為一種“枷鎖”,而應(yīng)作為“跳板”——編者意圖與學(xué)生實際的“跳板”。因此,教學(xué)時,我們要精心研究教材,揣摩編者意圖、考慮學(xué)生實際,創(chuàng)造性地利用教材。
1、挖掘訓(xùn)練空白,及時補(bǔ)白教材。編者在編寫教材時,也考慮了地域、學(xué)科、時間等因素,留下了諸多空白,我們使用教材時,要深入挖掘其中的訓(xùn)練空白,及時補(bǔ)白教材。[片段一] 中的例題教學(xué),就挖掘出了教材中的訓(xùn)練空白,并沒有把教學(xué)簡單地停留在一種解答方法上,而是在學(xué)生預(yù)習(xí)的基礎(chǔ)上引導(dǎo)學(xué)生深入思考,在解決問題的過程中體會“從不同的角度去考慮問題,將得到不同的結(jié)果”的道理,從而學(xué)會多角度考慮問題,提高解決問題的能力。
2、找出知識聯(lián)系,大膽重組教材。數(shù)學(xué)知識具有一定的結(jié)構(gòu),知識間存在著密切的聯(lián)系,我們在教學(xué)時不能只著眼于本節(jié)課的教學(xué),而應(yīng)找出知識間的內(nèi)在聯(lián)系,幫助學(xué)生建立一個較為完整知識系統(tǒng)。[片斷二]的表1僅幫助學(xué)生熟練掌握體積公式,此外無更多的教學(xué)價值,而重組后的表2不僅實現(xiàn)了編者的意圖,而且為“比例”的教學(xué)作了提前孕伏。走出了數(shù)學(xué)教學(xué)的“只見樹木,不見森林”的“點教學(xué)”的誤區(qū)。
學(xué)生獲得發(fā)展是用好教材的標(biāo)準(zhǔn),有的教師在教學(xué)中常常脫離教材,片面追求新課程的形式,而忽略了實質(zhì)——“一切為了每一位學(xué)生的發(fā)展”。每個學(xué)生在一節(jié)課的40分鐘里獲得最大發(fā)展應(yīng)作為我們用好教材組織教學(xué)的追求。本節(jié)課緊扣教材,“以本為本”,著眼學(xué)生的發(fā)展,無論是知識技能、過程與方法、數(shù)學(xué)思考還是情感態(tài)度價值觀,學(xué)生都獲得了最大發(fā)展。
今天教學(xué)了圓柱的體積,教學(xué)時由于學(xué)生手頭上早有學(xué)具——圓柱體積的演示器,因而學(xué)生很容易想到把圓柱轉(zhuǎn)化成長方體的.方法,困難之處是學(xué)生在語言敘述時有些困難,比如沿著什么剪,平分成無數(shù)個什么圖形……(在形成方法后,讓學(xué)生互相說了兩遍)。
在實際教學(xué)時還是按部就班,先復(fù)習(xí)了長方體的體積計算方法,再由例4圖介入——先出示前面的長方體和正方體,讓生知道統(tǒng)一的算法后,再出示圓柱讓生猜測之間的聯(lián)系,繼而讓學(xué)生設(shè)法驗證——
但是此處教材設(shè)計了引問“圓可以轉(zhuǎn)化成長方形計算面積,圓柱可以轉(zhuǎn)化成長方體計算體積嗎?”可是學(xué)生早以有了圓柱體的演示學(xué)具,顯得有些多余(此是教學(xué)的一大困惑)。實際教學(xué)時還是由圓過渡到圓柱與長方體的聯(lián)系上來,讓學(xué)生討論方法及之間的聯(lián)系。我又借助了flash課件,輔助認(rèn)識平均分成更多的份數(shù)越來越接近長方體……
有一點,就是學(xué)生學(xué)具上其中的一塊又被平均分成了兩份,其中的一份移接到另一端,拼成一個更接近的長方體,而教材上的示意圖并沒有這樣的過程(以前的教材是和學(xué)具一樣的)。
我認(rèn)為教材的方法是很可取的,符合極限思想,因為就是不再平均切分一塊后移接,如果我們均分的份數(shù)無限多時,拼成的圖形也一定是一個長方體,何必多此一舉呢?
另外,我在網(wǎng)上的教案中看到了這樣的一個統(tǒng)一公式:直柱體的體積=底面積×高,覺得有些道理,教學(xué)時使用了,讓學(xué)生分別說出三種立體圖形的體積公式后,進(jìn)行發(fā)現(xiàn),得出此點(順?biāo)浦郏墙酉聛磉進(jìn)行了一些提高性的應(yīng)用練習(xí),出示了三個直柱體(一個是直三棱柱,一個是直六棱柱,一個是底面是梯形的直柱體)告之底面積和高試它們的體積。不知這一教學(xué)環(huán)節(jié)是否可?
《圓柱體積》教學(xué)反思2
“圓柱的體積”一課是在學(xué)生已經(jīng)學(xué)習(xí)了“正方體的體積”和“長方體的體積”“圓柱的認(rèn)識”“圓柱的表面積”等相關(guān)知識的基礎(chǔ)上進(jìn)行教學(xué)的。同時又是為學(xué)生今后進(jìn)一步學(xué)習(xí)其他立體圖形的有關(guān)知識做好充分準(zhǔn)備的一堂課。結(jié)合本課的教學(xué)實際情況,反思如下:
一、創(chuàng)設(shè)問題情境。
上課開始提出“我們認(rèn)識了哪些立體圖形?它們的體積怎樣求?現(xiàn)在我想知道這塊橡皮泥的體積或這個瓶子的容積,該怎么辦?”學(xué)生提出“把橡皮泥捏成長方體的形狀,把瓶子里裝滿水,再倒入一個長方體的盒子里,就可以求出來瓶子的容積了”。這樣不斷地引導(dǎo)學(xué)生運用已有的生活經(jīng)驗和舊知,探索和解決實際問題,并制造認(rèn)知沖突,形成了“任務(wù)驅(qū)動”的探究氛圍。
二、知識過程,讓學(xué)生在參與中學(xué)習(xí)。
首先讓學(xué)生大膽猜想,圓柱體的體積可能等于什么?大部分學(xué)生猜測圓柱體的體積可能等于底面積×高。然后小組同學(xué)想辦法加以驗證。有的組將圓柱體橡皮泥捏成長方體,計算出了橡皮泥的體積。有的組通過圓的面積公式推導(dǎo),將圓柱體分成若干等分后再拼成長方體。通過計算長方體的`體積推導(dǎo)出圓柱體的體積。然后讓學(xué)生比較圓柱體的底面積、高與長方體的底面積、高之間的關(guān)系,使學(xué)生確信自己的猜想是正確的。
三、在討論交流中學(xué)。
通過實驗驗證之后,讓學(xué)生看書自學(xué),按照書中介紹的方法自己推導(dǎo)出圓柱體的體積公式。小組進(jìn)行如下討論:
(1)拼成的近似長方體體積與原來的圓柱體積有什么關(guān)系?
。ǎ玻┢闯傻慕崎L方體的底面積與原來的圓柱底面積有什么關(guān)系?
。ǎ常┢闯傻慕崎L方體的高與原來的圓柱高有什么關(guān)系?這樣不僅為學(xué)生提供動手操作、觀察以及交流討論的平臺,而且還發(fā)揮了學(xué)生的主動性。
在這一環(huán)節(jié)中我處理的有點倉促,沒有給所有學(xué)生充分的思考和探究的時間。如能抓住這一契機(jī)讓全體學(xué)生都去操作、思考、探究可能會更有利于學(xué)生理解和掌握公式。在今后的教學(xué)中我要特別關(guān)注學(xué)生的學(xué)習(xí)過程,要根據(jù)教學(xué)要求,優(yōu)化課堂教學(xué)的需要對教材進(jìn)行適當(dāng)?shù)募庸ぬ幚怼?/p>
《圓柱體積》教學(xué)反思3
在教學(xué)圓柱的體積時,我采用新的教學(xué)理念,讓學(xué)生自己動手實踐、自主探索與合作交流,在實踐中體驗,從而獲得知識。通過這節(jié)
課的教學(xué),我覺得有以下幾個方面值得探討:
一、聯(lián)系舊知,導(dǎo)入新知。
圓柱的體積的導(dǎo)入,在回憶了長方體、正方體體積計算方法,并強(qiáng)調(diào)長方體、正方體的體積都可以用底面積乘高,接著復(fù)習(xí)一下圓面積計算公式的推導(dǎo)過程,這樣有助于學(xué)生猜想:“圓柱體是否可以轉(zhuǎn)化成我們學(xué)過的圖形呢?”激發(fā)學(xué)生好奇心,獨立思考問題,探索問題的愿望。這樣聯(lián)系舊知,導(dǎo)入新知,思維過度自然,易接受新知。
二、動手操作,探索新知。
學(xué)生在探究新知時,教師要給予充分的思考空間,創(chuàng)設(shè)實踐操作的條件,營造出思考的環(huán)境氛圍。教學(xué)“圓柱的體積”時,學(xué)生親身參與操作,先用小刀把一塊月餅切成一個圓柱體把圓柱的底面分成若干份(例如,分成12等份),然后把圓柱切開,再拼起來,圓柱體就轉(zhuǎn)化成一個近似的長方體。找一找:這個長方體的長相當(dāng)于圓柱的什么,寬是圓柱的什么,高是圓柱的什么。圓柱的體積就是長方體的體積,從而推導(dǎo)出圓柱體積的計算公式。
三、課件展示,加深理解。
為了直觀、形象,讓學(xué)生觀看課件:圓轉(zhuǎn)化成近似長方形的過程,使學(xué)生很容易猜想出圓柱體也可以轉(zhuǎn)化成近似的長方體來得出體積公式。在推導(dǎo)圓柱體積公式的過程中,要求學(xué)生想象:“如果把圓柱的底面平均分成32份、64份……切開后拼成的物體會有什么變化?”學(xué)生雖然能說出“拼成的物體越來越接近長方體! 但是,到底拼成的圖形怎樣更接近長方體?演示動畫后,學(xué)生不僅對這個切拼過程一目了然,同時又加深理解了圓柱體轉(zhuǎn)化成近似長方體的.轉(zhuǎn)化方法。
四、分層練習(xí),發(fā)散思維。
為了培養(yǎng)學(xué)生解題的靈活性,進(jìn)行分層練習(xí),拓展知識,發(fā)散思維。如:已知圓柱底面積和高,怎樣求圓柱體積;已知圓柱底面半徑和高,怎樣求圓柱體積;已知圓柱底面直徑和高,怎樣求圓柱體積;已知圓柱底面周長和高,怎樣求圓柱體積;已知圓柱側(cè)面積和高,怎樣求圓柱體積;已知圓柱底面積和體積,怎樣求高;已知圓柱體積和高,怎樣求底面積等。
但是不成功的地方也有,如學(xué)生在操作時有些學(xué)生拼的不是長方體,而是其他的形狀,這里由于是上公開課的原因就沒有有針對性的講解,只做到了多數(shù)學(xué)生的指導(dǎo)而沒有做到面向全體學(xué)生,這點我覺得在課堂上很難做到。
總之,通過這次的國培學(xué)習(xí),使我的思想認(rèn)識和課堂技能都有了新的認(rèn)識,感謝國培!
教材作為教學(xué)的憑借與依據(jù),只不過是編者對學(xué)科知識、國家要求與學(xué)生進(jìn)行整和思考的結(jié)晶。但由于受時間與地域的影響,我們在執(zhí)行教材時不能把它作為一種“枷鎖”,而應(yīng)作為“跳板”——編者意圖與學(xué)生實際的“跳板”。因此,教學(xué)時,我們要精心研究教材,揣摩編者意圖、考慮學(xué)生實際,創(chuàng)造性地利用教材。
《圓柱體積》教學(xué)反思4
在新課程不斷向縱深推進(jìn)的今天,我們的課堂既要繼承傳統(tǒng),把課上雜實。同時,也要把課上厚實。在教《圓柱的體積》一課時,我采用新的教學(xué)理念,讓學(xué)生自己動手實踐、自主探索與合作交流,在實踐中體驗,從而獲得知識,并利用新知去解決實際問題。對此,我作如下反思:
(一)在學(xué)習(xí)情境中體驗數(shù)學(xué)
《課程標(biāo)準(zhǔn)》指出:要創(chuàng)設(shè)與學(xué)生生活環(huán)境、知識背景密切相關(guān)的,又是學(xué)生感興趣的學(xué)習(xí)情境,讓學(xué)生在觀察、猜測、操作、驗證、歸納等活動中逐步體會數(shù)學(xué)知識的產(chǎn)生、形成與發(fā)展的過程,獲得積極的情感體驗,感受數(shù)學(xué)的價值,同時掌握必要的基礎(chǔ)知識與基本技能。
在這節(jié)課中,我承接了上節(jié)課的內(nèi)容,提問引出給水杯做布套是在求圓柱的表面積,求圓柱能裝多少水是在求圓柱的容積,也就是體積,然后順勢提出你能計算圓柱體的體積嗎?這一全課的核心問題,從而引發(fā)學(xué)生的猜測、討論、交流等數(shù)學(xué)活動,引導(dǎo)學(xué)生可以用以前學(xué)過的.知識將圓柱轉(zhuǎn)化成近似的長方體,然后讓學(xué)生在小組內(nèi)利用手中的學(xué)具進(jìn)行操作實驗將其插拼成一個近似長方體;通過讓學(xué)生觀察比較,發(fā)現(xiàn)聯(lián)系:二者之間什么變了,什么不變?接著我使用了課件-----把圓柱體沿著它的直徑切成了32和64等份,拼成一個近似的長方體 ,展示切拼后的長方體,讓學(xué)生更加直觀的觀察,從而證實自己的推測。并總結(jié)出圓柱體的體積計算公式。。
由此至終讓學(xué)生經(jīng)歷了做數(shù)學(xué)的過程,并伴隨著問題的圓滿解決,又使學(xué)生體驗到了成功的喜悅與滿足。與此同時,使學(xué)生理解與感受到了數(shù)學(xué)的魅力。
(二)在觀察操作中探索新知
數(shù)學(xué)學(xué)習(xí)過程充滿著觀察、驗證、推理等探索性與挑戰(zhàn)性活動,因此,動手實踐、自主探究、合作交流是《課程標(biāo)準(zhǔn)》所倡導(dǎo)的數(shù)學(xué)學(xué)習(xí)的主要方式。觀察是課程實施中經(jīng)常讓學(xué)生進(jìn)行的一種活動,觀察的效果取決于觀察者是否能夠關(guān)注被觀察的對象。操作是讓學(xué)生進(jìn)行感知的另一種活動,是一種內(nèi)部思維的外在具體化。交流是在觀察操作基礎(chǔ)上的一種由動作上升到語言概括的過程。
在本節(jié)課的動手操作中,讓全班學(xué)生以小組為單位圍坐在一起,為他們提供自主探究的空間,同時盡量延長小組交流的時間,試圖把學(xué)習(xí)的時間、空間還給學(xué)生,讓其進(jìn)行自主探究、合作交流。 你有什么發(fā)現(xiàn)?你是怎樣想的?等這樣一些指向探索的話語鼓勵學(xué)生獨立思考、動手操作、合作探究,讓學(xué)生根據(jù)已有的知識經(jīng)驗創(chuàng)造性地建構(gòu)自己的數(shù)學(xué),而不是去模仿復(fù)制別人的數(shù)學(xué)。
(三)在練習(xí)中鞏固新知,提升能力
《數(shù)學(xué)課程標(biāo)準(zhǔn)》要求以人為本,以學(xué)生發(fā)展為本。因此,教師應(yīng)根據(jù)不同的教學(xué)內(nèi)容精心設(shè)計練習(xí),促進(jìn)學(xué)生全面發(fā)展。我充分考慮到本班學(xué)生的實際水平及年齡特征,選擇了貼近學(xué)生生活的練習(xí)題,有坡度,由易到難,循序漸進(jìn),激發(fā)了學(xué)生的學(xué)習(xí)興趣,使各個層次的學(xué)生都能得到不同的鍛煉,能力都有所提升。
(四)在本節(jié)課中的不足之處
由于學(xué)生的學(xué)具有限,在很大程度上阻礙了學(xué)生主動探究的欲望和動手操作的能力,加上本人能力有限,語言組織能力不是很好,使課堂氣氛不是那么活躍,課堂顯得有些壓抑,在今后的教學(xué)中還有待于提高。
《圓柱體積》教學(xué)反思5
今天第一節(jié)課荊校長和建英聽了我講的《圓柱的體積》,提出了幾點我應(yīng)該注意和改進(jìn)的地方。
一是,要注重課前的預(yù)習(xí),圓柱的體積一課復(fù)習(xí)舊知環(huán)節(jié),需要學(xué)生回顧什么是體積,長方體正方體體積公式,回顧轉(zhuǎn)化的方法推導(dǎo)圓面積計算公式,需要回顧的舊知較多,所以可以課前設(shè)計成幾個問題讓學(xué)生預(yù)習(xí),就可以避免課上學(xué)生由于對知識的遺忘,而浪費時間,影響課堂的高效。
二是,猜想圓柱的體積可能與什么有關(guān)這個環(huán)節(jié),由于注重讓學(xué)生猜想,感受,體驗,并通過媒體演示驗證猜想的正確性,有些浪費時間。
三是,推導(dǎo)體積公式環(huán)節(jié),我讓學(xué)生利用拆好的圓柱學(xué)具,兩人合作,圍繞三個問題進(jìn)行探究“圓柱可以轉(zhuǎn)化為我們學(xué)過的哪個立體圖形,轉(zhuǎn)化后的圖形與圓柱之間有怎樣的關(guān)系,利用這樣的關(guān)系可以推導(dǎo)出怎樣的公式”,學(xué)生合作的成果需要通過語言表達(dá)出來,所以之后的展示匯報環(huán)節(jié),我叫了三個學(xué)生上臺按照提示的三個問題完整的表述,最后有全體齊說,沒有讓學(xué)生再互相說一說,在說中再去感受推導(dǎo)的過程,我覺得這也是我欠缺的`地方。
四是,練習(xí)反饋環(huán)節(jié),我依據(jù)學(xué)生推導(dǎo)出的四個公式,先讓學(xué)生看著這些公式說一說,求圓柱的體積需要知道什么條件,學(xué)生說出了四種情況:知道了半徑和高求體積;知道了周長和高求體積;知道了底面積和高求體積;知道了直徑和高求體積。我順勢出了四道這樣的練習(xí)題讓學(xué)生在本上完成并集體訂正,感覺練習(xí)的量不夠。
通過這節(jié)課,從荊校長和建英的評課中,我體會到要想提高課堂效率,首先,抓好課前預(yù)習(xí),其次,注重用多種方式讓學(xué)生多說而且要說透,最后,注意各環(huán)節(jié)時間分配要合理,做到心中有數(shù)。還有就是要加大練習(xí)量,關(guān)注到每一個學(xué)生,對學(xué)生學(xué)習(xí)效果掌握程度做到了如指掌。
《圓柱體積》教學(xué)反思6
圓柱的體積這部分知識是學(xué)生在有了圓柱、圓和長方體的相關(guān)知識基礎(chǔ)上進(jìn)行教學(xué)的。在知識和技能上,通過對圓柱體積的具體研究,理解圓柱體的體積公式的推導(dǎo)過程,會計算圓柱的體積;在方法的選擇上,抓住新舊知識的聯(lián)系,通過想象、實際操作,從經(jīng)歷和體驗中思考,培養(yǎng)學(xué)生科學(xué)的思維方法;貼近學(xué)生生活實際,創(chuàng)設(shè)情境,解決問題,體現(xiàn)數(shù)學(xué)知識“從生活中來到生活中去”的理念,激發(fā)學(xué)生的學(xué)習(xí)興趣和對科學(xué)知識的求知欲,使學(xué)生樂于探索,善于探究。
在圓的體積公式推導(dǎo)過程中,給予學(xué)生足夠的時間和空間,激發(fā)學(xué)生的探究的欲望,培養(yǎng)學(xué)生的空間想象力。我把圓柱體拼成一個長方體,就是把一個新圖形轉(zhuǎn)換成一個我們學(xué)習(xí)過的圖形,通過討論,爭鳴從而得出比較深層的數(shù)學(xué)知識,這種思維的火花,我們老師應(yīng)及時捕捉,讓它開得絢麗多彩,從而讓學(xué)生的個性能得到充分的`培養(yǎng)。讓學(xué)生在學(xué)習(xí)的過程中體會到數(shù)學(xué)給自己帶來了巨大的成功感和喜悅感,我們老師這樣才能寓教于樂,從而達(dá)到了事半功倍了。
本節(jié)可的教學(xué)內(nèi)容是九年義務(wù)教育六年制小學(xué)教學(xué)第十二冊﹙人教版﹚《圓柱的體積》,以前教學(xué)此內(nèi)容時,直接告訴學(xué)生:圓柱的體積=底面積×高,用字母表示公式:V=S和,讓學(xué)生套公式練習(xí);我教此內(nèi)容時,不按傳統(tǒng)的教學(xué)方法,而是采用新的教學(xué)理念,讓學(xué)生自己動手實踐、自主探索與合作交流,在實踐中體驗,從而獲得知識。對此,我作如下反思:
一、學(xué)生學(xué)到了有價值的知識。
學(xué)生通過實踐、探索、發(fā)現(xiàn),得到的知識是“活”的,這樣的知識對學(xué)生自身智力和創(chuàng)造力發(fā)展會起到積極的推動作用。所有的答案也不是老師告訴的,而是、學(xué)生在自己艱苦的學(xué)習(xí)中發(fā)現(xiàn)并從學(xué)生的口里說出來的這樣的知識具有個人意義,理解更深刻。
二、培養(yǎng)了學(xué)生的科學(xué)精神和方法。
新課程改革明確提出要“強(qiáng)調(diào)讓學(xué)生通過實踐增強(qiáng)探究和創(chuàng)新意識,學(xué)習(xí)科學(xué)研究的方法,培養(yǎng)科學(xué)態(tài)度和科學(xué)精神”。學(xué)生動手實踐、觀察得出結(jié)論的過程,就是科學(xué)研究的過程。
三、促進(jìn)了學(xué)生的思維發(fā)展。
傳統(tǒng)的教學(xué)只關(guān)注教給學(xué)生多少知識,把學(xué)生當(dāng)成知識的“容器”。學(xué)生的學(xué)習(xí)只是被動地接受、記憶、模仿,往往學(xué)生只知其然而不知其所以然,其思維根本得不到發(fā)展。而這里創(chuàng)設(shè)了豐富的教學(xué)情景,學(xué)生在興趣盎然中經(jīng)歷了自主探究、獨立思考、分析整理、合作交流等過程,發(fā)現(xiàn)了教學(xué)問題的存在,經(jīng)歷了知識產(chǎn)生的過程,理解和掌握了數(shù)學(xué)基本知識,從而促進(jìn)了學(xué)生的思維發(fā)展。
本節(jié)課采用新的教學(xué)方法,取得了較好的教學(xué)效果,不足之處是:由于學(xué)生自由討論、實踐和思考的時間較多,練習(xí)的時間較少。
《圓柱體積》教學(xué)反思7
本節(jié)的教學(xué)重難點是:
1、探索并掌握圓柱體積公式,能計算圓柱的體積。
2、在探索圓柱體積的過程中,進(jìn)一步體會轉(zhuǎn)化的`數(shù)學(xué)思想,體驗數(shù)學(xué)問題的探索性和挑戰(zhàn)性,感受數(shù)學(xué)結(jié)論的確定性。
教學(xué)方法:我利用課件演示和實物演示來解決。讓學(xué)生學(xué)會轉(zhuǎn)化的數(shù)學(xué)思想。
成功之處:
1、利用遷移規(guī)律引入新課,為學(xué)生創(chuàng)設(shè)良好的學(xué)習(xí)情境;
2、遵循學(xué)生的認(rèn)知規(guī)律,引導(dǎo)學(xué)生觀察、思考、說理,調(diào)動多種感觀參與學(xué)習(xí);
3、正確處理"兩主"關(guān)系,充分發(fā)揮學(xué)生的主體作用,注意學(xué)生學(xué)習(xí)的參與過程及知識的獲取過程,學(xué)生積極性高,學(xué)習(xí)效果好。達(dá)到預(yù)期效果。
不足之處:
1、個別學(xué)生還是對公式不會靈活應(yīng)用。
2、練習(xí)題有些多,應(yīng)選擇一些有代表性的題,這樣小測驗就能有充足的時間了。
3、關(guān)注學(xué)生的有些少,尤其是應(yīng)關(guān)注做錯的學(xué)生,應(yīng)知道為什么錯,及時在課堂評價出結(jié)果會更好。
4、老師講得多,應(yīng)放手讓學(xué)生自己觀察自己處理自己總結(jié),會更好。
《圓柱體積》教學(xué)反思8
案例背景:
《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:數(shù)學(xué)是人們對客觀世界定性把握和定量刻畫、逐漸抽象概括形成方法和理論并進(jìn)行廣泛應(yīng)用的過程。這一描述,明確了小學(xué)數(shù)學(xué)的內(nèi)涵,即數(shù)學(xué)學(xué)習(xí)是一個過程。近日,在市小學(xué)數(shù)學(xué)名師課堂教學(xué)展示中,天福小學(xué)的劉愛芳校長執(zhí)教的《圓柱的體積》一課,使我對個人的專業(yè)素養(yǎng)和課堂的設(shè)計內(nèi)涵,都有了很深的觸動。
案例描述:
片段一:
師:同學(xué)們,往這里看,今天老師帶來了三件物體:玻璃杯、橡皮泥、金屬零件。這三件物體有什么共同點?
生:都是圓柱。
師:圓柱形的物體生活中很多,以這三樣為例,你能提出哪些數(shù)學(xué)問題?
生1:水杯的容積是多少?
生2:水杯的表面積是多少?
生3:水杯的體積是多少?
師:這三個問題很好,我們記下一個。
師板書,水杯容積
生繼續(xù)提出關(guān)于橡皮泥和金屬容器的體積的問題,師板書:橡皮泥體積,金屬零件體積。
師:關(guān)于表面積的問題前面我們已經(jīng)研究過,這節(jié)課我們來研究圓柱體積的問題。
師板書:圓柱體積
師:以你現(xiàn)在的知識儲備,你能解決哪個問題?
生:水杯的容積
師:怎樣求?
生:可以把水杯的裝滿水,倒進(jìn)一個長方體的容器中,計算出長方體容器中水的體積,也就求出了水杯的容積。
師:瞧,“裝滿水”,“滿”這個字用的多好,把水杯中的水倒進(jìn)長方體容器中,從而求出水的體積。在這個過程中,運用了一種重要的數(shù)學(xué)思想方法----轉(zhuǎn)化。
師板書:倒---長方體,轉(zhuǎn)化。
師:在轉(zhuǎn)化過程中,水的什么變了?什么沒變?
生:水的形狀變了,體積沒變。
師:水杯的容積解決了,橡皮泥的體積呢?金屬零件的體積呢?
師:根據(jù)學(xué)生回答分別板書:捏---正方體,浸----長方體。
師:剛才我們根據(jù)這三個物體的共同特點,通過轉(zhuǎn)化,把它們轉(zhuǎn)化成我們以前學(xué)過的長方體或正方體的體積。是不是通過這三個方法,就可以解決所有的圓柱的體積的問題?
生:不能。
師:為什么?
生交流,得知物體很大時,沒法進(jìn)行轉(zhuǎn)化。
師:因此,我們需要尋找一種通用的方法,你想到了什么方法?
生:計算。
師:圓柱體體積與什么有關(guān)?猜想一下怎樣計算?
……
片段二:
師:回顧這節(jié)課的學(xué)習(xí)過程,你認(rèn)為你最有收獲的是什么?
師:前面大家根據(jù)長方體和正方體的體積公式猜測出圓柱的體積公式也是底面積×高,通過驗證得知大家的猜測是正確的。
師:這三個立體圖形有什么共同點?
師:像這樣的形體在數(shù)學(xué)上叫做直柱體。
課件出示:長方體、正方體、圓柱及它們的體積公式都是底面積×高。
師:生活中的直柱體還有哪些?
師:它們的形體是否也是底面積×高?有興趣的同學(xué)可以課后研究。
案例反思:
片段一的教學(xué)中,教師出示了三樣精心準(zhǔn)備的物體----玻璃杯、橡皮泥、金屬零件(都是圓柱體),在學(xué)生圍繞這三種物體提出數(shù)學(xué)問題后,教師并沒有直接引導(dǎo)學(xué)生去探求如何計算圓柱體的體積,而是通過“以你現(xiàn)在的知識儲備,你能解決哪個問題?”“在轉(zhuǎn)化過程中,水的什么變了?什么沒變?”“瞧,‘裝滿水’,‘滿’這個字用的多好,把水杯中的水倒進(jìn)長方體容器中,從而求出水的體積。在這個過程中,運用了一種重要的數(shù)學(xué)思想方法----轉(zhuǎn)化。”“水杯的容積解決了,橡皮泥的體積呢?金屬零件的體積呢?”這些引導(dǎo)性語言,使學(xué)生明白有些物體的體積可以分別通過倒、捏、浸轉(zhuǎn)化成長方體或正方體的體積來解決,“轉(zhuǎn)化”的提出為學(xué)生后面構(gòu)建數(shù)學(xué)模型,探究圓柱體積公式奠定了基礎(chǔ)。緊接著“是不是通過這三個方法,就可以解決所有的圓柱的體積的'問題?”這個問題,點燃了學(xué)生的探究欲望,這是這節(jié)課成功的起點,通過極限思想的滲透,使學(xué)生體會到了探究圓柱體積的計算方法的必要性。
片段二的教學(xué)中,教師在引導(dǎo)學(xué)生進(jìn)行學(xué)習(xí)反思的基礎(chǔ)上,進(jìn)行了拓展延伸。通過對長方體、正方體、圓柱體積公式的歸納匯總,引出直柱體的概念,學(xué)生進(jìn)行了對直柱體表象的交流。此時,學(xué)生的探究欲望、學(xué)習(xí)激情,并沒有隨著課的尾聲而有所減弱,而是探究熱情再一次被點燃,孩子們帶著強(qiáng)烈的研究熱情結(jié)束了本節(jié)課的學(xué)習(xí)。
教材是一種重要的課程資源,對于學(xué)校和教師來說,課程實施更多地應(yīng)該是如何更好地“用教材”,而不是簡單地“教教材”。我們在用教材時不能把它作為一種“枷鎖”,而應(yīng)作為“跳板”——編者意圖與學(xué)生實際的“跳板”。因此,教學(xué)時,我們要精心研究教材,揣摩編者意圖、考慮學(xué)生實際,研究學(xué)生學(xué)習(xí)起點,讓學(xué)生親歷完整的數(shù)學(xué)學(xué)習(xí)過程,觸摸數(shù)學(xué)鮮活生動的生命脈息,體會到知識產(chǎn)生過程中的前因和后果,從而進(jìn)行有效的數(shù)學(xué)思考。
《圓柱體積》教學(xué)反思9
《圓柱的體積》不僅要讓學(xué)生掌握圓柱體積的計算方法,最重要的是掌握學(xué)習(xí)的思想方法(轉(zhuǎn)化),因此,教學(xué)新課前,復(fù)習(xí)了圓的面積公式的推導(dǎo)過程,以及長方體正方體的體積計算公式。為轉(zhuǎn)化做好了鋪墊。課上,出示課件:等底等高的長方體、正方體、圓柱,學(xué)生通過觀察,作出猜測:(1)圓柱的體積等于長方體和正方體的體積。(2)圓柱的體積也等于底面積乘高。猜測是否準(zhǔn)確呢?點燃學(xué)生的學(xué)習(xí)欲望。讓學(xué)生根據(jù)圓的面積公式的推導(dǎo)過程,讓學(xué)生遷移想:圓柱體能轉(zhuǎn)化成什么幾何形體,然后讓學(xué)生用教具驗證圓柱轉(zhuǎn)化成長方體過程,并討論思考:這個圓柱體與轉(zhuǎn)化后的長方體相比什么變了,什么沒變?從而得出結(jié)論圓柱的體積等于底面積乘以高。有一種推導(dǎo)過程是我沒有預(yù)設(shè)到的:一學(xué)生回答,長方體的長是圓柱的底面周長的一半,寬是底面半徑,高不變。所以圓柱體積=底面周長的一半×底面半徑×高。我沒有否定她的'回答,接著又讓學(xué)生動手實踐操作,讓學(xué)生發(fā)現(xiàn)長方體與圓柱之間的聯(lián)系,利用圓的周長和面積把圓柱體積的也轉(zhuǎn)化成底面積乘以高。這樣有學(xué)生的積極主動的參與,不僅創(chuàng)造性的建立了數(shù)學(xué)模型而且發(fā)現(xiàn)圓柱體的轉(zhuǎn)換成長方體的規(guī)律,掌握了一種重要的學(xué)習(xí)方法,轉(zhuǎn)化。
為了培養(yǎng)學(xué)生解題的靈活性,進(jìn)行分層練習(xí),拓展知識,發(fā)散思維。如:已知圓柱底面積和高,怎樣求圓柱體積;已知圓柱底面半徑和高,怎樣求圓柱體積;已知圓柱底面直徑和高,怎樣求圓柱體積;已知圓柱底面周長和高,怎樣求圓柱體積;已知圓柱側(cè)面積和高,怎樣求圓柱體積;已知圓柱底面積和體積,怎樣求高;已知圓柱體積和高,怎樣求底面積等。
在本節(jié)課的教學(xué)過程中還存在諸多的問題。
1、演示圓柱的體積的時候,因為學(xué)生手中沒有學(xué)具,教師教具的局限性,演示時后面的學(xué)生看不清楚。
2、在圓柱體經(jīng)過切割、拼接之后轉(zhuǎn)化為近似長方體
的時候,應(yīng)多給后進(jìn)生留有觀察、討論的時間,他們的思維反應(yīng)能力比其他學(xué)生較慢,應(yīng)給于他們一定的空間和時間,讓后進(jìn)生也積極參與到課堂的學(xué)習(xí)中,使全班同學(xué)共同進(jìn)步。
3、在解決實際問題的時候,不僅要注重公式的應(yīng)用,還要注意計算能力的培養(yǎng)。
《圓柱體積》教學(xué)反思10
圓柱的體積這一課的主要內(nèi)容是圓柱的體積公式的推導(dǎo)及其應(yīng)用。因為公式的推導(dǎo)過程是個難點,因此在教學(xué)設(shè)計時,讓學(xué)生自己動手實踐、自主探索與合作交流,在實踐中體驗,幫助學(xué)生理解公式的來源,從而獲得知識。下面我從教學(xué)過程、教學(xué)策略、教學(xué)技能等方面談?wù)勛约旱囊恍┓此肌?/p>
圓柱的體積的導(dǎo)入,課本是先讓學(xué)生回憶“長方體、正方體的體積都可以用它們的底面積乘高來計算”,再接著馬上提問:“圓柱的體積怎樣計算呢?”讓學(xué)生們猜一猜。猜想計算方法固然有好處,但要讓學(xué)生馬上做實驗理解圓柱體積計算公式的推導(dǎo)過程,我覺得這樣教學(xué)引入,學(xué)生的思維跳躍得太快,銜接性不強(qiáng),不利于學(xué)生理解和掌握實驗的用意,課堂效果就會明顯不佳。于是我設(shè)計時在回憶了長方體、正方體體積計算方法之后,接著復(fù)習(xí)一下圓面積計算公式的推導(dǎo)過程,這樣有助于學(xué)生猜想,并能更好地聯(lián)系舊知,思維過度自然、流暢,便于學(xué)生的思維走向正確的方向,不過應(yīng)該注意時間的控制,不能花費太多的時間。
學(xué)生進(jìn)行數(shù)學(xué)探究時,應(yīng)給予充分的思考空間,創(chuàng)設(shè)實踐操作的條件,營造出思考的環(huán)境氛圍。在推導(dǎo)圓柱體積公式過程時,我讓學(xué)生經(jīng)歷先想-觀察-動手操作的過程。把圓柱的底面分成若干份(例如,分成16等份),然后把圓柱切開,照課本上的圖拼起來,圓柱體就轉(zhuǎn)化成一個近似的長方體;接著讓學(xué)生小組交流長方體的長和寬與圓柱的各部分有什么關(guān)系?圓柱的體積怎樣計算的`道理,從而推導(dǎo)出圓柱體積的計算公式。這樣學(xué)生親身參與操作,有了空間感覺的體驗,也有了充分的思考空間。
在教學(xué)中,我采用多媒體的直觀教具相結(jié)合的手段,在圓柱體積公式推導(dǎo)過程中指導(dǎo)學(xué)生充分利用手中的學(xué)具、教具,學(xué)生在興趣盎然中經(jīng)歷了自主探究、獨立思考、分析整理、合作交流、總結(jié)歸納等過程,發(fā)現(xiàn)了教學(xué)問題的存在,經(jīng)歷了知識產(chǎn)生的過程,理解和掌握了數(shù)學(xué)基本知識,從而促進(jìn)了學(xué)生的思維發(fā)展。
當(dāng)然,本節(jié)課還存在很多不足之處,在學(xué)生們動手操作時,因為想給學(xué)生充分的思考和探究的時間,以至于后來的練習(xí)時間不夠。在今后的教學(xué)中我要特別關(guān)注學(xué)生的學(xué)習(xí)過程,把握課堂教學(xué)時間,對教材進(jìn)行適當(dāng)?shù)募庸ぬ幚恚岣哒n堂教學(xué)效率。
《圓柱體積》教學(xué)反思11
《圓柱的體積》是在學(xué)生已經(jīng)學(xué)會計算長方體、正方體的體積,并且掌握圓柱基本特征的基礎(chǔ)上,引導(dǎo)學(xué)生探索并掌握圓柱的體積公式。通過教材教學(xué)學(xué)習(xí)后,下面我從教學(xué)過程、教學(xué)策略、教學(xué)技能等方面談?wù)勛约旱囊恍┓此肌?/p>
一、在教學(xué)過程的設(shè)計方面
1、導(dǎo)入時,力求突破教材,有所創(chuàng)新
圓柱的體積的導(dǎo)入,課本是先讓學(xué)生回憶“長方體、正方體的體積都可以用它們的底面積乘高來計算”,再接著馬上提問:“圓柱的體積怎樣計算呢?”讓學(xué)生們猜一猜。猜想計算方法固然有好處,但要讓學(xué)生馬上做實驗理解圓柱體積計算公式的推導(dǎo)過程,我覺得這樣教學(xué)引入,學(xué)生的思維跳躍得太快,銜接性不強(qiáng),不利于學(xué)生理解和掌握實驗的用意,課堂效果就會明顯不佳。于是我設(shè)計時不妨在回憶了長方體、正方體體積計算方法之后,接著復(fù)習(xí)一下圓面積計算公式的推導(dǎo)過程,這樣有助于學(xué)生猜想,并能更好地聯(lián)系舊知,思維過度自然、流暢,便于學(xué)生的思維走向正確的方向,這時教師的引導(dǎo)才是行之有效的。不過應(yīng)該注意時間的控制,不能花費太多的時間。
2、新課時,要實現(xiàn)人人參與,主動學(xué)習(xí)
學(xué)生進(jìn)行數(shù)學(xué)探究時,應(yīng)給予充分的思考空間,創(chuàng)設(shè)實踐操作的條件,營造出思考的環(huán)境氛圍。在推導(dǎo)圓柱體積公式過程時,我讓學(xué)生經(jīng)歷先想—觀察—動手操作的過程。把圓柱的底面分成若干份(例如,分成16等份),然后把圓柱切開,照課本上的圖拼起來,圓柱體就轉(zhuǎn)化成一個近似的長方體;接著讓學(xué)生小組交流長方體的長和寬與圓柱的各部分有什么關(guān)系?圓柱的體積怎樣計算的道理,從而推導(dǎo)出圓柱體積的計算公式。這樣學(xué)生親身參與操作,有了空間感覺的體驗,,也有了充分的思考空間。這樣設(shè)計我覺得能突破難點,課堂效果很好。
3、練習(xí)時,形式多樣,層層遞進(jìn)
例題“練一練”中的題目都比較淺顯,學(xué)生還能容易掌握,但遇到多轉(zhuǎn)幾個彎的題目就束手無策了。所以,為了讓學(xué)生能熟練地掌握計算圓柱的體積,我在設(shè)計練習(xí)時動了一番腦,花心思去考慮怎樣才能讓學(xué)生用最短的時間完成不同類型的題目。通過反思,我概括出五種類型: a。已知圓柱底面積(s)和高(h),計算圓柱體積可以應(yīng)用這一公式:V=sh。
b。已知圓柱底面半徑(r)和高(h),計算圓柱體積可以應(yīng)用這一公式:V=πr2h。
c。已知圓柱底面直徑(d)和高(h),計算圓柱體積可以應(yīng)用這一公式:V=π(d/2)2h。
d。已知圓柱底面周長(c)和高(h),計算圓柱體積可以應(yīng)用這一公式:V=π(c÷π÷2)2h。
e。已知圓柱側(cè)面積(s側(cè))和高(h),計算圓柱體積可以應(yīng)用這一公式:V=π(s側(cè)÷h÷π÷2)2h。
因為是第一課時所以在鞏固練習(xí)中,只要從前四種類型去考慮,做到面面俱到,逐層深入,由易到難,使學(xué)生真正掌握好計算圓柱體積的方法另外,還設(shè)計了解決生活中的問題,讓學(xué)生能學(xué)以致用解決生活中的問題。
二、在教學(xué)策略方面
我采用多媒體的直觀教具相結(jié)合的手段,在圓柱體積公式推導(dǎo)過程中指導(dǎo)學(xué)生充分利用手中的`學(xué)具、教具,學(xué)生在興趣盎然中經(jīng)歷了自主探究、獨立思考、分析整理、合作交流、總結(jié)歸納等過程,發(fā)現(xiàn)了教學(xué)問題的存在,經(jīng)歷了知識產(chǎn)生的過程,理解和掌握了數(shù)學(xué)基本知識,從而促進(jìn)了學(xué)生的思維發(fā)展。而在鞏固練習(xí)這一環(huán)節(jié),我用多媒體發(fā)揮它大容量、節(jié)省時間的優(yōu)點。
三、在教學(xué)技能方面
學(xué)生通過實踐、探索、發(fā)現(xiàn),得到的知識是“活”的,這樣的知識對學(xué)生自身智力和創(chuàng)造力發(fā)展會起到積極的推動作用。所有的答案也不是老師告訴的,而是學(xué)生在自己艱苦的學(xué)習(xí)過程中發(fā)現(xiàn)并從學(xué)生的口里說出來的,這樣的知識具有個人意義,理解更深刻。但是我覺得這個引導(dǎo)的過程需要教師有認(rèn)真準(zhǔn)備,隨時能解決課堂上可能出現(xiàn)的一些問題。傳統(tǒng)的教學(xué)只關(guān)注教給學(xué)生多少知識,把學(xué)生當(dāng)成知識的“容器”。學(xué)生的學(xué)習(xí)只是被動地接受、記憶、模仿,往往學(xué)生只知其然而不知其所以然,其思維根本得不到發(fā)展。而我在本課創(chuàng)設(shè)了豐富的教學(xué)情景。
四、教學(xué)要達(dá)到三個目的
一是認(rèn)識等底等高的含義,便于判斷圓柱可以轉(zhuǎn)化成與它等底等高的長方體。
二是從長方體與正方體等底等高,體積也相等的事實,引發(fā)等底等高的圓柱與長方體的體積也相等的猜想,形成把圓柱轉(zhuǎn)化成長方體的活動心向。
三是復(fù)習(xí)長方體、正方體的體積公式,圓柱的體積最終也要這樣計算。
《圓柱體積》教學(xué)反思12
本課主要內(nèi)容是圓柱的體積公式的推導(dǎo)及其應(yīng)用。因為公式的推導(dǎo)過程是個難點,因此在教學(xué)設(shè)計時,我讓學(xué)生自己動手實踐、自主探索與合作交流,在實踐中體驗,幫助學(xué)生理解公式的來源,從而獲得知識。下面我來談?wù)勛约旱囊恍┓此肌?/p>
1、導(dǎo)入時,力求突破教材,有所創(chuàng)新
圓柱的體積的導(dǎo)入,課本是先讓學(xué)生回憶“長方體、正方體的體積都可以用它們的底面積乘高來計算”,再接著馬上提問:“圓柱的體積怎樣計算呢?”讓學(xué)生們猜一猜。猜想計算方法固然有好處,但要讓學(xué)生馬上做實驗理解圓柱體積計算公式的推導(dǎo)過程,我覺得這樣教學(xué)引入,學(xué)生的思維跳躍得太快,銜接性不強(qiáng),不利于學(xué)生理解和掌握實驗的用意,課堂效果就會明顯不佳。于是我設(shè)計時在回憶了長方體、正方體體積計算方法之后,接著復(fù)習(xí)一下圓面積計算公式的推導(dǎo)過程,這樣有助于學(xué)生猜想,并能更好地聯(lián)系舊知,思維過度自然、流暢,便于學(xué)生的思維走向正確的方向,這時教師的引導(dǎo)才是行之有效的。不過應(yīng)該注意時間的控制,不能花費太多的時間。
2、新課時,要實現(xiàn)人人參與,主動學(xué)習(xí)
學(xué)生進(jìn)行數(shù)學(xué)探究時,應(yīng)給予充分的思考空間,創(chuàng)設(shè)實踐操作的條件,營造出思考的環(huán)境氛圍。在推導(dǎo)圓柱體積公式過程時,因為學(xué)校沒有提供學(xué)具,所以我只能先讓學(xué)生展開空間想象,結(jié)合圓面積的.推導(dǎo)過程,借助課件一一展示推導(dǎo)過程。讓學(xué)生觀察發(fā)現(xiàn)把圓柱的底面分成若干份(例如,分成16等份),然后把圓柱切開,圓柱體就轉(zhuǎn)化成一個近似的長方體;接著讓學(xué)生小組交流長方體的長和寬與圓柱的各部分有什么關(guān)系?圓柱的體積怎樣計算的道理,從而推導(dǎo)出圓柱體積的計算公式。這樣學(xué)生親身參與操作,有了空間感覺的體驗,也有了充分的思考空間。
3、練習(xí)時,形式多樣,層層遞進(jìn)
例題的題目都比較淺顯,學(xué)生還能容易掌握,但遇到多轉(zhuǎn)幾個彎的題目就束手無策了。所以,為了讓學(xué)生能熟練地掌握計算圓柱的體積,我在設(shè)計練習(xí)時考慮怎樣才能讓學(xué)生用最短的時間完成不同類型的題目。
。1)、已知圓柱底面積(s)和高(h),計算圓柱體積可以應(yīng)用這一公式:V=sh。
(2)、已知圓柱底面半徑(r)和高(h),計算圓柱體積可以應(yīng)用這一公式:V=πr2h。
(3)、已知圓柱底面直徑(d)和高(h),計算圓柱體積可以應(yīng)用這一公式:V=π(d/2) 2h。
。4)、已知圓柱底面周長(c)和高(h),計算圓柱體積可以應(yīng)用這一公式:V=π(c÷π÷2) 2h。
。5)、已知圓柱側(cè)面積(s側(cè))和高(h),計算圓柱體積可以應(yīng)用這一公式:V=π(s側(cè)÷h÷π÷2) 2h。
因為是第一課時所以在鞏固練習(xí)中,只要從前四種類型去考慮,做到面面俱到,逐層深入,由易到難,使學(xué)生真正掌握好計算圓柱體積的方法。另外,還設(shè)計了解決生活中的問題,讓學(xué)生能學(xué)以致用解決生活中的問題。不足之處
本想給學(xué)生準(zhǔn)備學(xué)具,親自動手操作圓柱體體積的推導(dǎo)過程,無奈學(xué)校沒有學(xué)具,所以只能讓孩子借助圓面積的推導(dǎo)過程展開想象,然后借助課件展示圓柱體積的推導(dǎo)過程,可能對一些學(xué)困生的理解還有困難。
《圓柱體積》教學(xué)反思13
今天教學(xué)“圓柱體的體積”。接受昨天學(xué)生提出的“只學(xué)不會的”學(xué)習(xí)方式,在黑板上分了兩個區(qū)域,一個復(fù)習(xí)區(qū)域:長方體的體積怎樣計算?圓的面積計算公式是怎樣推導(dǎo)出來的呢?重點研究區(qū)域:圓柱體的體積怎樣計算?
面對復(fù)習(xí)的問題,學(xué)生回答的很好,長方體的體積=長×寬×高,當(dāng)我指著長方體的底面時,學(xué)生就說,長方體的體積=底面積×高。學(xué)生對于圓的面積計算公式的的推導(dǎo)記憶猶新,這是很值得我高興的。面對本課的重點解決問題,我滿懷信心(兩個復(fù)習(xí)問題的鋪墊,學(xué)生會首先想起來把圓柱體按照圓的面積推導(dǎo)過程一樣,來等分圓柱體),開始引導(dǎo)學(xué)生獨立思考,怎樣計算圓柱體的體積?正當(dāng)大家苦思冥想的時候,高邁把手舉得高高的:老師,我想出來一種。又是他,每次回答問題總是第一個舉手,把別人的“風(fēng)頭”都給搶去了,他是一個愛表現(xiàn)的學(xué)生,為了不影響其他學(xué)生思考,每次我總是“壓一壓”他的積極性!敖o大家留一點思考的時間,等一會再說你的方法”,誰知道這個“積極分子”不容我把話說完,已經(jīng)拿著自己的圓柱體跑到講臺上了,(哎,讓我怎么評價他呢,耐不住性子啊,再穩(wěn)重一些多好。浚,:我是這樣想的,這是一個圓柱體的生日蛋糕,我想把它橫著切成一個個圓片( ),分給你們吃。霎時間,下面的同學(xué)都笑了,過了一會,一個學(xué)生提問:切蛋糕,和圓柱體的體積有什么關(guān)系啊?“有啊,這個圓柱體蛋糕的體積就是每一個圓片的面積乘上圓片的個數(shù)!边@樣解釋完,下面的學(xué)生有的在笑,有的'在議論,還有的再思考。我想想了,這是我該出手的時候了:“高邁, 給大家解釋一下,圓片是什么?圓片的個數(shù)又是什么?”“圓片就是圓柱的底面積,圓片的個數(shù)就是圓柱的高”。話音剛落,掌聲響了起來……。
這種推導(dǎo)圓柱體體積的計算方法,是出乎我意料之外的,因為,解決問題前,已經(jīng)復(fù)習(xí)了長方體體積計算方法與圓的面積的推導(dǎo)方法,都是為“把圓柱體進(jìn)行等分轉(zhuǎn)化成長方體體積來推導(dǎo)”做鋪墊的。誰曾向,這種用“堆”的過程來說明“底面積×高”計算圓柱體體積的道理,實際是“積分”思想,這是要到中學(xué)才學(xué)習(xí)的,學(xué)生不好理解的,竟然跑到“預(yù)想方法”之前了。真是“計劃不如變化快啊”。課堂上的“精彩總是不期而至”啊。試想,如果,剛開始他舉手,我就像以往一樣“壓一壓他,讓他和其他學(xué)生同步思考,說不定,這個想法在他腦海里轉(zhuǎn)瞬即逝,那么這個精彩的火花就不會在課堂上呈現(xiàn)。由此感悟到,課堂上,要給學(xué)生即興發(fā)言的機(jī)會,及時的捕捉學(xué)生的思維靈感,精彩就會不期而至。
《圓柱體積》教學(xué)反思14
《圓柱的體積》要求讓學(xué)生經(jīng)歷“類比猜想—驗證說明”的探索圓柱體積計算方法的過程,掌握圓柱體積的計算方法,能正確計算圓柱的體積,并會解決一些簡單的實際問題。教學(xué)一開始,我就先讓學(xué)生回憶圓的面積公式我們是如何得到的,有的同學(xué)馬上想到用轉(zhuǎn)化的方法,接著我再提出:那么你認(rèn)為圓柱的體積公式該如何推導(dǎo)呢?學(xué)生自然而然就想到也用轉(zhuǎn)化的方法,然后我再讓學(xué)生分成四人小組活動,充分利用學(xué)具盒的學(xué)具討論如何得到圓柱的體積公式。
最后,學(xué)生通過積極的.討論、交流后,很自然的想到把圓柱轉(zhuǎn)化成長方體,并根據(jù)長方體與圓柱的關(guān)系來推導(dǎo)出圓柱的體積公式。這樣運用原有的經(jīng)驗讓學(xué)生去解答,充分激發(fā)了學(xué)生學(xué)習(xí)的潛能,大大調(diào)動了學(xué)生的學(xué)習(xí)積極性,學(xué)生學(xué)得愉快,我也教得輕松,真是事半功倍。
《圓柱體積》教學(xué)反思15
本節(jié)課我注重知識的形成過程,使學(xué)生能主動學(xué)習(xí)新知,突破難點、疑點,能解決實際問題。
1、在教學(xué)過程中,讓學(xué)生自主合作、探究,經(jīng)歷猜想、操作、驗證、討論、歸納等數(shù)學(xué)活動。比如,我從圓柱模型拼成長方體入手,強(qiáng)調(diào)它們是等底等高長方體。由長方體體積公式V=Sh,猜想圓柱的體積公式。再通過學(xué)生的具體實際操作、小組合作探究,從而探索出圓柱體積公式,并掌握圓柱體積的計算方法,能解決與圓柱體積計算相關(guān)的一些簡單的實際問題。
2、在活動中進(jìn)一步使學(xué)生體會“轉(zhuǎn)化”方法的價值,比如,回顧上學(xué)期所學(xué)的圓的面積推導(dǎo)公式,從而理解圓柱的底面積與長方體底面積相等。這樣有利于培養(yǎng)學(xué)生應(yīng)用已有知識解決新問題的能力,發(fā)展空間觀念和初步的'推理能力。
3、本節(jié)課中,我最大的遺憾就是沒有采用多媒體課件。但我認(rèn)為一節(jié)好課就非要使用多媒體課件嗎?其實不然。當(dāng)然,今天我在教學(xué)中,確實有許多的不足。比如,將圓柱體切割成若干等份,等份越多,分得越細(xì),就越接近于長方體。倘若使用了多媒體課件演示,或許效果更明顯。
總之,今天教學(xué)中的不足,我會不斷改進(jìn)。既面向全體學(xué)生,又注重不同學(xué)生的不同發(fā)展,設(shè)計更精、更符合學(xué)生發(fā)展的梯度問題,讓他們在有限的時空內(nèi)愉快學(xué)習(xí)、成長!
【《圓柱體積》教學(xué)反思】相關(guān)文章:
《圓柱的體積》教學(xué)反思10-26
《圓柱的體積》教學(xué)反思06-09
圓柱的體積的教學(xué)反思02-27
圓柱的體積教學(xué)反思02-18
圓柱的體積教學(xué)反思范文10-25
(精品)圓柱的體積教學(xué)反思07-09
《圓柱體積》教學(xué)反思04-20
圓柱的體積教學(xué)反思15篇06-13
《圓柱的體積》教學(xué)反思15篇02-13