倍數(shù)和因數(shù)教學(xué)反思
身為一名人民教師,教學(xué)是重要的工作之一,寫教學(xué)反思可以快速提升我們的教學(xué)能力,那么教學(xué)反思應(yīng)該怎么寫才合適呢?以下是小編收集整理的倍數(shù)和因數(shù)教學(xué)反思,歡迎大家分享。
倍數(shù)和因數(shù)教學(xué)反思1
一、單元主題圖體驗(yàn)數(shù)學(xué)化過程。單元主題圖是教材中的一個(gè)重要內(nèi)容,它是選擇某一個(gè)主題構(gòu)建的一幅情境圖,本單元就出現(xiàn)了“數(shù)的世界”單元主題圖。在教學(xué)中,我是從培養(yǎng)學(xué)生的問題意識(shí)出發(fā)來組織教學(xué)的,首先讓學(xué)生獨(dú)立觀察主題圖,通過獨(dú)立思考提出問題;然后讓孩子們通過小組合作,共享學(xué)習(xí)的成果;最后通過解決問題,體驗(yàn)獲取知識(shí)的過程。教學(xué)中學(xué)生不僅很快找到了整數(shù)、小數(shù)、負(fù)數(shù),而且也找到了橙子賣完了用“0”表示,圖中有一個(gè)凳子、一張桌子用“1”表示,更多的是學(xué)生提出了很多的數(shù)學(xué)問題,如我有50元可以買多少千克蘋果?學(xué)生真正是在自主學(xué)習(xí)的過程中提出問題、解決問題,體驗(yàn)“數(shù)學(xué)化”的過程。
二、數(shù)形結(jié)合實(shí)現(xiàn)有意義建構(gòu)。教材中對(duì)因數(shù)概念的認(rèn)識(shí),設(shè)計(jì)了“用小正方形拼長(zhǎng)方形”的操作活動(dòng),引導(dǎo)學(xué)生在方格紙上畫一畫,寫出乘法算式,再與同學(xué)進(jìn)行交流。在思考“哪幾種拼法”時(shí),借助“拼小正方形”的活動(dòng),使數(shù)與形有機(jī)地結(jié)合,防止學(xué)生進(jìn)行“機(jī)械地學(xué)習(xí)”;學(xué)生對(duì)因數(shù)和理解不僅是數(shù)字上的認(rèn)識(shí),而且能與操作活動(dòng)與圖形描述聯(lián)系起來,促進(jìn)了學(xué)生的.有意義建構(gòu),這是一個(gè)“先形后數(shù)”的過程,是一個(gè)知識(shí)抽象的過程。
三、探索活動(dòng)關(guān)注解決問題的策略。學(xué)生在探索活動(dòng)中,運(yùn)用做記號(hào)、列表格、畫示意圖等解決問題的策略來發(fā)現(xiàn)規(guī)律和特征,在探究的過程中,體會(huì)觀察、分析、歸納、猜想、驗(yàn)證等過程,孩子們學(xué)會(huì)了思考,初步形成了解決問題的一些基本策略。
四、困惑:
1、第一次真正開始教北師大教材,最大的感覺是教學(xué)的空間真的擴(kuò)大了,課堂活躍了,但是同時(shí)給學(xué)生進(jìn)行課后輔導(dǎo)的時(shí)間也增加了,每節(jié)課從學(xué)生的反饋看來,卻有相當(dāng)一部分的學(xué)生存在各種問題,教材中太缺乏那些能讓他們成功的“基礎(chǔ)性”題目,整個(gè)一個(gè)單元只有一個(gè)練習(xí)一,那六道題目真的能解決問題嗎?能否多給孩子們一些選擇。
2、不太明白為什么一定要使用“因數(shù)”這個(gè)概念,比較“因數(shù)——公因數(shù)——最大公因數(shù)——約分”和“約數(shù)——公約數(shù)——最大公約數(shù)——約分”,總覺得后者容易接受吧。這一改好像我們還得教學(xué)生家長(zhǎng),就真的有學(xué)生家長(zhǎng)投訴說“老師啊,你教錯(cuò)了,那不是因數(shù),是約數(shù)……”,讓人哭笑
倍數(shù)和因數(shù)教學(xué)反思2
去年教學(xué)《公倍數(shù)和公因數(shù)》這一單元時(shí),依照學(xué)生預(yù)習(xí)、閱讀課本進(jìn)行教學(xué),老師沒有作過多的講解,從學(xué)生的練習(xí)反饋中,部分學(xué)生求兩個(gè)數(shù)的最大公因數(shù)和最小公倍數(shù)錯(cuò)誤百出,反思教學(xué)后,覺得用課本上列舉的方法,真的很難一下子準(zhǔn)確找到最大公因數(shù)或最小公倍數(shù)。如:8和10的最小公倍數(shù),有學(xué)生寫80,25和50的最大公因數(shù)有學(xué)生寫5!{(diào)查詢問學(xué)生找兩個(gè)數(shù)公倍數(shù)和最小公倍數(shù),或者兩個(gè)數(shù)的公因數(shù)和最大公因數(shù)的感受,他們都說“太麻煩了”。
今年教學(xué)《公倍數(shù)和公因數(shù)》這一單元時(shí),我在去年教學(xué)《公倍數(shù)和公因數(shù)》的基礎(chǔ)上作了一些改進(jìn):
一、仍然是將預(yù)習(xí)前置。
二、動(dòng)手操作,想象延伸。
讓學(xué)生動(dòng)手操作,提高感知效果,幫助學(xué)生形成豐富的表象,是促進(jìn)形象思維發(fā)展的有利途徑。例題教學(xué)中讓學(xué)生動(dòng)手鋪,鋪后想,想后算,算后思。
用長(zhǎng)3厘米、寬2厘米的長(zhǎng)方形紙片分別鋪邊長(zhǎng)6厘米、8厘米的正方形,能鋪滿哪個(gè)正方形?拿出手中的圖形,動(dòng)手拼一拼。
學(xué)生分組操作,用除法算式把不同的擺法寫出來。
提問:通過剛才的活動(dòng),你們發(fā)現(xiàn)了什么?
以直觀的操作活動(dòng),在具體的問題情境中體會(huì)公倍數(shù)和公因數(shù)與生活的聯(lián)系,讓學(xué)生經(jīng)歷公倍數(shù)和公因數(shù)概念的形成過程,加深對(duì)抽象概念的理解。
思考:根據(jù)剛才鋪正方形的過程,在頭腦里想一想,用3厘米、寬2厘米的長(zhǎng)方形紙片正好鋪滿邊長(zhǎng)多少厘米的正方形?在小組里交流。
三、在教學(xué)中嚴(yán)格要求學(xué)生先用“列舉法”教學(xué)“求兩數(shù)公倍數(shù)與公因數(shù)”;在學(xué)生相對(duì)較熟練的時(shí)候嘗試讓學(xué)生直接說出公倍數(shù)與公因數(shù);在此基礎(chǔ)上適當(dāng)介紹后面的閱讀知識(shí),但不要求學(xué)生使用。
四、在教學(xué)了用“列舉法”“求兩數(shù)公倍數(shù)與公因數(shù)”的知識(shí)之后,適當(dāng)提高訓(xùn)練難度,將求“最小公倍數(shù)”與“最大公因數(shù)”合并訓(xùn)練。通過聯(lián)系“最大公因數(shù)”、“最小公倍數(shù)”的知識(shí),引導(dǎo)學(xué)生發(fā)現(xiàn)求兩個(gè)數(shù)的最小公倍數(shù)和最大公因數(shù)的擴(kuò)倍法等其它的'方法。要求學(xué)生根據(jù)情況,用自己喜歡的方法來求兩個(gè)數(shù)的最小公倍數(shù)和最大公因數(shù)。這樣,給學(xué)生結(jié)合題目中兩個(gè)數(shù)的特點(diǎn),自主選擇方法的空間,學(xué)生比較喜歡,掌握較好。通過練習(xí)引導(dǎo)學(xué)生感悟、概括出了一些特殊情況:(1)兩個(gè)數(shù)是倍數(shù)關(guān)系的,這兩個(gè)數(shù)的最小公倍數(shù)是其中較大的一個(gè)數(shù),最大公因數(shù)是其中較小的一個(gè)數(shù);(2)三種最大公因數(shù)是1,最小公倍數(shù)是兩數(shù)乘積的情況(“互質(zhì)數(shù)”這個(gè)概念學(xué)生沒有學(xué)到):①兩個(gè)不同的素?cái)?shù);②兩個(gè)連續(xù)的自然數(shù);③1和任何自然數(shù)。
課后反思:
一、預(yù)習(xí)后的課堂教學(xué),還要教,直接放手要出問題。
二、介紹一下短除法是有必要的。但不能直接按傳統(tǒng)的教學(xué)思路以短除法求最大公因數(shù)和最小公倍數(shù)簡(jiǎn)單代替列舉法。
三、應(yīng)逐步鼓勵(lì)學(xué)生把求最大公因數(shù)和最小公倍數(shù)過程想在腦中,直接說出結(jié)果。引導(dǎo)感興趣的同學(xué)在課后探索其它的求最大公因數(shù)和最小公倍數(shù)的內(nèi)容,適當(dāng)提高學(xué)生的思維水平。
倍數(shù)和因數(shù)教學(xué)反思3
新教材在引入倍數(shù)和因數(shù)概念時(shí)與以往的老教材有所不同,比如在認(rèn)識(shí)“因數(shù)、倍數(shù)”時(shí),不再運(yùn)用整除的概念為基礎(chǔ),引出因數(shù)和倍數(shù),而是直接從乘法算式引出因數(shù)和倍數(shù)的概念,目的是減去“整除”的數(shù)學(xué)化定義,降低學(xué)生的認(rèn)知難度,雖然課本沒出現(xiàn)“整除”一詞,但本質(zhì)上仍是以整除為基礎(chǔ)。我在教學(xué)中充分體現(xiàn)以學(xué)生為主體,為學(xué)生的探究發(fā)現(xiàn)提供足夠的時(shí)空和適當(dāng)?shù)闹笇?dǎo),同時(shí),也為提高課堂教學(xué)的有效性,我從以下三個(gè)方面談一點(diǎn)教學(xué)體會(huì)。
一、設(shè)疑遷移,點(diǎn)燃學(xué)習(xí)的火花
良好的開頭是成功的一半。我采用“拼拼擺擺”作為談話進(jìn)入正題,不僅可以調(diào)動(dòng)學(xué)生的學(xué)習(xí)興趣,一一對(duì)應(yīng)、相互依存。對(duì)感知倍數(shù)和因數(shù)進(jìn)行有效的滲透和拓展。
教學(xué)找一個(gè)數(shù)的倍數(shù)時(shí),我依據(jù)學(xué)情,設(shè)計(jì)讓學(xué)生獨(dú)立探究尋找3的倍數(shù)。我設(shè)計(jì)了嘗試練——引出沖突——討論探究這么一個(gè)學(xué)習(xí)環(huán)節(jié)。學(xué)生帶著“又對(duì)又好”的要求開始自主練習(xí),學(xué)生找倍數(shù)的方法有:依次加3、依次乘1、2、3……、用乘法口訣等等。在學(xué)生充分討論的基礎(chǔ)上,我組織學(xué)生圍繞“好”展開評(píng)價(jià),有的學(xué)生認(rèn)為:從小到大依次寫,因?yàn)橛行,所以覺得好;有的學(xué)生認(rèn)為:用乘法算式寫倍數(shù),既快而且不受前面倍數(shù)的影響,可以很快地找到第幾個(gè)倍數(shù)是多少,學(xué)生發(fā)現(xiàn)3的倍數(shù)寫不完時(shí)都面面相覷,左顧右盼。學(xué)生通過討論,認(rèn)為用省略號(hào)表示比較恰當(dāng)。用語文中的一個(gè)標(biāo)點(diǎn)符號(hào)解決了數(shù)學(xué)問題,自己發(fā)現(xiàn)問題自己解決,學(xué)生從中體驗(yàn)到解決問題的愉快感和掌握新知的成就感。
二、操作實(shí)踐,舉例內(nèi)化,認(rèn)識(shí)倍數(shù)和因數(shù)
我創(chuàng)設(shè)有效的數(shù)學(xué)學(xué)習(xí)情境,數(shù)形結(jié)合,變抽象為直觀。首先讓學(xué)生動(dòng)手操作把12個(gè)小正方形擺成不同的長(zhǎng)方形,再讓學(xué)生寫出不同的乘法算式,借助多媒體出示乘法算式引出因數(shù)和倍數(shù)的意義。這樣在學(xué)生已有的知識(shí)基礎(chǔ)上,從動(dòng)手操作,直觀感知,讓學(xué)生自主體驗(yàn)數(shù)與形的結(jié)合,進(jìn)而形成因數(shù)與倍數(shù)的意義.使學(xué)生初步建立了“因數(shù)與倍數(shù)”的概念。 這樣,充分學(xué)習(xí)、利用、挖掘教材,用學(xué)生已有的數(shù)學(xué)知識(shí)引出了新知識(shí),減緩難度,效果較好。
三、注重細(xì)節(jié),注重學(xué)生的習(xí)慣培養(yǎng)
學(xué)生在找一個(gè)數(shù)的因數(shù)時(shí)最常犯的'錯(cuò)誤就是漏找,即找不全。學(xué)生怎樣按一定順序找全因數(shù)這也正是本課教學(xué)的難點(diǎn)。所以在學(xué)生交流匯報(bào)時(shí),我結(jié)合學(xué)生所敘思維過程,相機(jī)引導(dǎo)并形成有條理的板書,如:36÷1=36,36÷2=18,36÷3=12,36÷4=9。
這樣的板書幫助學(xué)生有序的思考,形成明晰的解題思路的作用是毋庸質(zhì)疑的。教師能像教材中那樣一頭一尾地成對(duì)板書因數(shù),這樣既不容易寫漏,而且學(xué)生么隨著流程的進(jìn)行,勢(shì)必會(huì)感受到越往下找,區(qū)間越小,需要考慮的數(shù)也就越少。當(dāng)找到兩個(gè)相鄰的自然數(shù)時(shí),他們自然就不會(huì)再找下去了。書寫格式這一細(xì)節(jié)的教學(xué),既避免了教師羅嗦的講解,又有效突破了教學(xué)難點(diǎn),我相信像這樣潤(rùn)物無聲的細(xì)節(jié),無論于學(xué)生、于課堂都是有利無弊的
由于這節(jié)是概念課,因此有不少東西是由老師告知的,但并不意味著學(xué)生完全被動(dòng)地接受。教學(xué)之前我知道這節(jié)課時(shí)間會(huì)很緊,所以在備課的時(shí)候,我認(rèn)真鉆研了教材,仔細(xì)分析了教案,看哪些地方時(shí)間安排的可以少一些,所以我在總結(jié)倍數(shù)的特征,這一環(huán)節(jié)里縮短出示時(shí)間,直接以3個(gè)小問題出示,,實(shí)際效果我認(rèn)為是比較理想的。課上還應(yīng)該及時(shí)運(yùn)用多媒體將學(xué)生找的因數(shù)呈現(xiàn)出來,引導(dǎo)學(xué)生歸納總結(jié)自己的發(fā)現(xiàn):最小的因數(shù)是1,最大的因數(shù)是它本身。應(yīng)該及時(shí)跟上個(gè)性化的語言評(píng)價(jià),激活學(xué)生的情感,將學(xué)生的思維不斷活躍起來。
倍數(shù)和因數(shù)教學(xué)反思4
【教學(xué)內(nèi)容】
人教版數(shù)學(xué)五年級(jí)下冊(cè)P12一14,練習(xí)二。
【教學(xué)過程】
一、操作空間,初步感知。
1.同桌用12塊完全一樣的小正方形拼成一個(gè)長(zhǎng)方形,有幾種拼法?要求:能想象的就想象,不能想象的才借助小正方形擺一擺。
2.學(xué)生動(dòng)手操作,并與同桌交流擺法。
3.請(qǐng)用算式表達(dá)你的擺法。
匯報(bào):1×12=12,2×6=12,3×4=12。
【評(píng)析】通過讓學(xué)生動(dòng)手操作、想象、表達(dá)等環(huán)節(jié),既為新知探索提供材料,又孕育求一個(gè)數(shù)的因數(shù)的思考方法。
二、探索空間,理解新知。
1.理解因數(shù)和倍數(shù)。
(1)觀察3×4=12,你能從數(shù)學(xué)的角度說說它們之間的關(guān)系嗎? 師根據(jù)學(xué)生的表達(dá)完成以下板書: 3是12的因數(shù) 12是3的倍數(shù) 4是12的因數(shù) 12是4的倍數(shù) 3和4是12的因數(shù) 12是3和4的倍數(shù)
(2)用因數(shù)和倍數(shù)說說算式1×12=12,2×6=12的關(guān)系。
(3)觀察因數(shù)和倍數(shù)的相互關(guān)系。揭示:研究因數(shù)和倍數(shù)時(shí),所指的數(shù)是整數(shù)(一般不包括O)。
2.求一個(gè)數(shù)的因數(shù)。
(1)出示2,5,12,15,36。從這些數(shù)中找一找誰是誰的因數(shù)。 學(xué)生匯報(bào)。
師:2和12是36的因數(shù),找1個(gè)、2個(gè)不難,難就難在把36所有的因數(shù)全部找出來,請(qǐng)同學(xué)們找出36的所有因數(shù)。
出示要求:
、倏瑟(dú)立完成,也可同桌合作。
、诳山柚鷦偛耪页12的所有因數(shù)的方法。
、蹖懗36的所有因數(shù)。
、芟胍幌耄鯓诱也拍鼙WC既不重復(fù),又不遺漏。 教師巡視,展示學(xué)生幾種答案。
生1:1,2,3,4,9,12,36。
生2:1,36,2,18,3,12,4,9,6。
生3:1,4,2,36,9,3,6,12,18。
(2)比較喜歡哪一種答案?為什么?
用什么方法找既不重復(fù)又不遺漏。(按順序一對(duì)一對(duì)找,一直找到兩個(gè)因數(shù)相差很小或相等為止)
師:有序思考更能準(zhǔn)確找出一個(gè)數(shù)的所有因數(shù)。 完成板書:描述式、集合式。
(3)30的因數(shù)有哪些?
【評(píng)析】學(xué)生圍繞教師出示的思考步驟,尋找36的所有因數(shù)。既留足了自主探索的空間,又在方法上有所引導(dǎo),避免了學(xué)生的盲目猜測(cè)。通過展示、比較不同的答案,發(fā)現(xiàn)了按順序一對(duì)一對(duì)找的好方法,突出了有序思考的重要性,有效地突破了教學(xué)的難點(diǎn)。
3.求一個(gè)數(shù)的倍數(shù)。
(1)3的倍數(shù)有:——,怎樣
有序地找,有多少個(gè)?
找一個(gè)數(shù)的倍數(shù),用1,2,3,4?分別乘這個(gè)數(shù)。 (2)練一練:6的倍數(shù)有: ,40以內(nèi)6的`倍數(shù)有:一o
【評(píng)析】
由于有了有序思考的基礎(chǔ),求一個(gè)數(shù)的倍數(shù)水到渠成,本環(huán)節(jié)重在思考方法上的提升。
4.發(fā)現(xiàn)規(guī)律。
觀察上面幾個(gè)數(shù)的因數(shù)和倍數(shù)的例子,你對(duì)它們的最大數(shù)和最小數(shù)有什么發(fā)現(xiàn)? 根據(jù)學(xué)生匯報(bào),歸納:一個(gè)數(shù)的最小因數(shù)是I,最大因數(shù)是它本身;一個(gè)數(shù)的最小倍數(shù)是它本身,沒有最大的倍數(shù)。
【評(píng)析】
通過觀察板書上幾個(gè)數(shù)的因數(shù)和倍數(shù),放手讓學(xué)生發(fā)現(xiàn)規(guī)律,既突出了學(xué)生的主體地位,又培養(yǎng)了學(xué)生觀察、歸納的能力。 三、歸納空間,內(nèi)化新知。
師生共同總結(jié):
(1)因數(shù)和倍數(shù)是相互的,不能單獨(dú)存在。
(2)找一個(gè)數(shù)的因數(shù)和倍數(shù),應(yīng)有序思考。
四、拓展空間,應(yīng)用新知。
1、15的因數(shù)有:——,15的倍數(shù)有:——。
2.判斷。
(1)6是因數(shù),24是倍數(shù)。( )
(2)3.6÷4=0.9,所以3.6是4的因數(shù)。 ( )
(3)1是1,2,3,4?的因數(shù)。 ( )
(4)一個(gè)數(shù)的最小倍數(shù)是21,這個(gè)數(shù)的因數(shù)有1,5,25。( )
3、選用4,6,8,24,1,5中的一些數(shù)字,用今天學(xué)習(xí)的知識(shí)說一句話。
4、舉座位號(hào)起立游戲。
(1)5的倍數(shù)。
(2)48的因數(shù)。
(3)既是9的倍數(shù),又是36的因數(shù)。
(4)怎樣說一句話讓還坐著的同學(xué)全部起立。
【評(píng)析】
本環(huán)節(jié)的前3題側(cè)重于鞏固新知,后2題側(cè)重于發(fā)展思維。通過“說一句話”和“起立游戲”,展現(xiàn)了學(xué)生的個(gè)性思維,體現(xiàn)了知識(shí)的應(yīng)用價(jià)值。
【反思】
本課教學(xué)設(shè)計(jì)重在讓學(xué)生通過自主探索,掌握求一個(gè)數(shù)的因數(shù)和倍數(shù)的方法,體驗(yàn)有序思考的重要性。體現(xiàn)了以下兩個(gè)特點(diǎn): 一、留足空間,讓探索有質(zhì)量。
留足思維空間,才能充分調(diào)動(dòng)多種感官參與學(xué)習(xí),充分發(fā)揮知識(shí)經(jīng)驗(yàn)和生活經(jīng)驗(yàn),使探索成為知識(shí)不斷提升、思維不斷發(fā)展、情感不斷豐富的過程。第一,把教材中的飛機(jī)圖改為拼長(zhǎng)方形,讓同桌同學(xué)借助12塊完全一樣的正方形拼成一個(gè)長(zhǎng)方形。由于方法的多樣性,為不同思維的展現(xiàn)提供了空間。第二:放手讓每個(gè)同學(xué)找出36的所有因數(shù),由于個(gè)人經(jīng)驗(yàn)和思
維的差異性,出現(xiàn)了不同的答案,但這些不同的答案卻成為探索新知的資源,在比較不同的答案中歸納出求一個(gè)數(shù)的因數(shù)的思考方法。第三:通過觀察12,36,30的因數(shù)和3,6的倍數(shù),你發(fā)現(xiàn)了什么?由于提供了豐富的觀察對(duì)象,保證了觀察的目的性。第四:讓學(xué)生“選用4,6,8,24,1,5中的一些數(shù)字,用今天學(xué)習(xí)的知識(shí)說一句話”。不拘形式的說話空間,不僅體現(xiàn)了差異性教學(xué),更是體現(xiàn)了不同的人在數(shù)學(xué)上的不同發(fā)展。 二、適度引導(dǎo),讓探索有方向。
引導(dǎo)與探索并不矛盾,探索前的適度引導(dǎo)正是讓探索走得更遠(yuǎn)。探索12塊完全一樣的正方形拼成一個(gè)長(zhǎng)方形,有幾種拼法?教師提示能想象的就想象,不能想象的可借助小正方形擺一擺。這樣的引導(dǎo),是尊重學(xué)生不同思維的有效引導(dǎo)。
在找36的所有因數(shù)時(shí),教師出示4條要求,既是引導(dǎo)學(xué)生思考的方向,又是提醒學(xué)生探索的任務(wù)。在讓學(xué)生觀察幾個(gè)數(shù)的因數(shù)和倍數(shù)時(shí),引導(dǎo)學(xué)生觀察最大數(shù)和最小數(shù),有什么發(fā)現(xiàn)?這樣的引導(dǎo),避免了學(xué)生的盲目觀察。可見,適度的引導(dǎo),保證了自主探索思維的方向性和順暢性。
整堂課,學(xué)生想象豐富、思維活躍、思考有序。整個(gè)認(rèn)知過程是體驗(yàn)不斷豐富、概念不斷形成、知識(shí)不斷建構(gòu)的過程。
倍數(shù)和因數(shù)教學(xué)反思5
《倍數(shù)和因數(shù)》是四下第九單元的內(nèi)容。教學(xué)時(shí),我首先讓學(xué)生動(dòng)手操作把12個(gè)小正方形擺成不同的長(zhǎng)方形,再讓學(xué)生寫出不同的乘法算式,借助乘法算式引出倍數(shù)和因數(shù)的意義。這樣在學(xué)生已有的知識(shí)基礎(chǔ)上,從動(dòng)手操作到直觀感知,讓學(xué)生自主體驗(yàn)數(shù)與形的結(jié)合,進(jìn)而形成倍數(shù)與因數(shù)的意義,使學(xué)生初步建立了“倍數(shù)與因數(shù)”的概念。根據(jù)算式直接說明誰是誰的倍數(shù),誰是誰的因數(shù),學(xué)生很容易接受,再通過學(xué)生自己舉例和交流,進(jìn)一步加深對(duì)倍數(shù)和因數(shù)意義的理解。從學(xué)生的反應(yīng)和課堂氣氛來看,教學(xué)效果還是不錯(cuò)的。
能不重復(fù)、不遺漏、有序地找出一個(gè)數(shù)的倍數(shù)和因數(shù),是本課的教學(xué)難點(diǎn)。教學(xué)時(shí),我先讓學(xué)生自己找3的倍數(shù),匯報(bào)交流后通過對(duì)比(一種是沒有順序,一種是有序的)得出如何有序地找一個(gè)數(shù)的倍數(shù)的方法。對(duì)于倍數(shù),學(xué)生在以前的.學(xué)習(xí)中已有所接觸,所以學(xué)生很容易學(xué),用的時(shí)間也比較少。
對(duì)于找一個(gè)數(shù)的因數(shù),學(xué)生最容易犯的錯(cuò)誤就是漏找,即找不全。所以在學(xué)生交流匯報(bào)時(shí),我結(jié)合學(xué)生所敘思維過程,相機(jī)引導(dǎo)并形成有條理的板書,如:36÷1=36,36÷2=18,36÷3=12,36÷4=9,36÷6=6。這樣的板書幫助學(xué)生有序的思考,形成明晰的解題思路。學(xué)生通過觀察,發(fā)現(xiàn)當(dāng)找到的兩個(gè)自然數(shù)非常接近時(shí),就不需要再找下去了。書寫格式這一細(xì)節(jié)的教學(xué),既避免了教師羅嗦的講解,又有效突破了教學(xué)難點(diǎn)。
倍數(shù)和因數(shù)教學(xué)反思6
本節(jié)課的內(nèi)容涉及的概念非常多,即抽象又容易混淆,如何使學(xué)生更加容易理解這些概念,理清概念之間的相互聯(lián)系,構(gòu)建知識(shí)之間的網(wǎng)絡(luò)體系是本節(jié)課教學(xué)的重難點(diǎn),同時(shí)學(xué)會(huì)整理知識(shí)的方法更是本節(jié)課教學(xué)的靈魂。
成功之處:
1、構(gòu)建知識(shí)網(wǎng)絡(luò)體系,理清知識(shí)之間的相互聯(lián)系。在教學(xué)中,我首先通過一個(gè)聯(lián)想接龍的游戲調(diào)動(dòng)學(xué)生學(xué)習(xí)的興趣,讓學(xué)生利用因數(shù)和倍數(shù)單元的知識(shí)來描述數(shù)字2,學(xué)生非常容易想到2是最小的質(zhì)數(shù)、2是偶數(shù)、2的因數(shù)是1和2、2的倍數(shù)有2,4,6…、2的倍數(shù)特征是個(gè)位是0、2、4、6、8的數(shù),通過學(xué)生的回答教師及時(shí)抓住其中的關(guān)鍵詞引出本單元的所有概念:因數(shù)、倍數(shù)、質(zhì)數(shù)、合數(shù)、奇數(shù)、偶數(shù)、公因數(shù)、最大公因數(shù)、公倍數(shù)、最小公倍數(shù)、2的倍數(shù)特征、3的倍數(shù)特征、5的倍數(shù)的特征。如何整理使這些凌亂的概念變得更加簡(jiǎn)潔、更加有序、更加能體現(xiàn)知識(shí)之間的聯(lián)系呢?通過學(xué)生課前的整理發(fā)揮小組的合作交流作用,在相互交流中,學(xué)生相互學(xué)習(xí)、相互借鑒,逐漸對(duì)這些概念的聯(lián)系有了更進(jìn)一步的認(rèn)識(shí),然后通過選取幾名同學(xué)的作品進(jìn)行展評(píng),最后教師和學(xué)生共同進(jìn)行整理和調(diào)整,最終來完善知識(shí)之間的網(wǎng)絡(luò)體系。
2、教給學(xué)生整理知識(shí)的方法。在教學(xué)中,是授人以魚不如授人以漁,作為教師莫過于教給學(xué)生必備的學(xué)習(xí)方法。在這節(jié)課的整理復(fù)習(xí)中,課前我讓學(xué)生把第二單元的關(guān)于因數(shù)和倍數(shù)的概念進(jìn)行了匯總,涉及的概念有如下幾個(gè):因數(shù)、倍數(shù)、公因數(shù)、公倍數(shù)、最大公因數(shù)、最小公倍數(shù)、質(zhì)數(shù)、合數(shù)、奇數(shù)、偶數(shù)、2的倍數(shù)特征、3的倍數(shù)特征、5的倍數(shù)特征,并提出具體的要求:一是觀察分析這些概念,哪些概念之間有著密切的聯(lián)系;二是根據(jù)這些概念之間的緊密聯(lián)系可以分為幾類;三是用你自己喜歡的方法表示出來,可以以數(shù)學(xué)手抄報(bào)的形式來呈現(xiàn)。通過課前的設(shè)計(jì),我事先搜集了一些有代表性的作品放在課件中,讓同學(xué)們進(jìn)行欣賞,相互取長(zhǎng)補(bǔ)短,共同學(xué)習(xí),共同進(jìn)步。課堂中在小組討論交流的`過程后,教師與學(xué)生共同對(duì)本單元的概念進(jìn)行了整理和總結(jié),并得出知識(shí)網(wǎng)絡(luò)圖。
縱觀本節(jié)課的設(shè)計(jì),就是通過學(xué)生的聯(lián)想,回憶前面學(xué)過的知識(shí),并在頭腦中構(gòu)建知識(shí)之間的相互聯(lián)系,從而揭示出這個(gè)知識(shí)網(wǎng)絡(luò)圖就是思維導(dǎo)圖。掌握了這種方法,就可以把數(shù)學(xué)中的每一個(gè)單元進(jìn)行整理,也可以把每一冊(cè)知識(shí)進(jìn)行整理,還可以把小學(xué)數(shù)學(xué)的知識(shí)進(jìn)行系統(tǒng)的整理,從而讓學(xué)生體會(huì)到思維導(dǎo)圖方法的強(qiáng)大之處,學(xué)生在感嘆這種方法的魅力同時(shí),并把這種方法推廣到其它學(xué)科,讓學(xué)生真正掌握知識(shí)整理的方法,并在以后的單元知識(shí)整理中加以運(yùn)用。
3、在練習(xí)中進(jìn)一步對(duì)概念進(jìn)行有針對(duì)性的復(fù)習(xí)。在練習(xí)環(huán)節(jié)中,我根據(jù)這些概念設(shè)計(jì)了一些相應(yīng)的練習(xí)。目的是以練習(xí)促?gòu)?fù)習(xí),在練習(xí)中更好的體會(huì)這些概念的具體含義,加深學(xué)生對(duì)概念的理解和掌握,學(xué)生在練習(xí)的過程中不僅掌握了知識(shí)整理的方法,還深刻地理解了知識(shí)的來龍去脈,對(duì)每個(gè)知識(shí)點(diǎn)的概念理解也更加清晰了,起到了復(fù)習(xí)回顧舊知識(shí)的作用。
不足之處:
1、個(gè)別學(xué)生在展評(píng)中不會(huì)去評(píng)價(jià),只是從設(shè)計(jì)的美觀上去思考,而沒有從體現(xiàn)知識(shí)之間的聯(lián)系上去進(jìn)行說明,在這一點(diǎn)上教師還要加以引導(dǎo)。
2、出現(xiàn)個(gè)別學(xué)生由于第二單元的知識(shí)是在開學(xué)初學(xué)習(xí)的,有些知識(shí)點(diǎn)已經(jīng)遺忘,導(dǎo)致出現(xiàn)連最小的偶數(shù)是幾都不知道了,因此在學(xué)完每個(gè)單元后要不間斷的進(jìn)行知識(shí)的鞏固和練習(xí)。
3、由于本節(jié)課的知識(shí)點(diǎn)過于多,練習(xí)的時(shí)間有些不足,導(dǎo)致基本的練習(xí)時(shí)間可以保障,但是需要拓展的知識(shí)沒有更好的呈現(xiàn)出來。
再教設(shè)計(jì):
1、抓住數(shù)學(xué)知識(shí)的本質(zhì),美觀的整理形式只是一些外在的,并不是重點(diǎn),注意引導(dǎo)學(xué)生從數(shù)學(xué)的本質(zhì)去思考問題,排除數(shù)學(xué)本質(zhì)以外的東西,去引發(fā)思考,從而形成良好的數(shù)學(xué)思維品質(zhì)。
2、還要繼續(xù)深入挖掘數(shù)學(xué)的思想、靈魂和方法,用以指導(dǎo)課堂教學(xué),讓學(xué)生掌握以后學(xué)習(xí)知識(shí)的鑰匙,學(xué)會(huì)開啟知識(shí)的大門。
倍數(shù)和因數(shù)教學(xué)反思7
在本節(jié)課中,我加強(qiáng)了操作,讓學(xué)生通過動(dòng)手拼12個(gè)小正方形為長(zhǎng)方形,經(jīng)歷操作活動(dòng)可以喚醒學(xué)生相關(guān)的數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),幫助學(xué)生在操作的過程中有意識(shí)地感受1和12、2和6、3和4這幾組數(shù)和12之間的有機(jī)聯(lián)系,為隨后學(xué)生有意義學(xué)習(xí)倍數(shù)和因數(shù)的概念打下基礎(chǔ)。
找一個(gè)數(shù)的因數(shù)是本節(jié)課的一個(gè)難點(diǎn),學(xué)生通過寫乘法算式和出發(fā)算式,感受到因數(shù)是成對(duì)出現(xiàn)的,同時(shí)要求學(xué)生在寫一個(gè)數(shù)的因數(shù)時(shí),一前一后成對(duì)地寫出來,寫好以后是一串從小到大排列的數(shù),從而做到有序、不重復(fù)、不遺漏。而對(duì)于總結(jié)一個(gè)數(shù)倍數(shù)和因數(shù)的特征及其個(gè)數(shù)時(shí),則引導(dǎo)學(xué)生自己通過觀察來感悟,學(xué)生學(xué)習(xí)的主動(dòng)性和創(chuàng)造性得到了較好的'體現(xiàn)。
我在課上對(duì)于認(rèn)識(shí)因數(shù)和倍數(shù)的教學(xué)所花的時(shí)間比較多,雖然也完成了教學(xué)任務(wù),但是“想想做做”沒來得及完成,十分遺憾。
倍數(shù)和因數(shù)教學(xué)反思8
在本課教學(xué)時(shí),先讓學(xué)生用12個(gè)同樣大小的正方形,擺成一個(gè)長(zhǎng)方形,并用乘法算式把自己的擺法表示出來,讓學(xué)生動(dòng)手操作、合作交流,怎樣擺,有哪些不同的擺法?先讓學(xué)生小組交流、操作后,以其中的一道乘法算式為例,引出倍數(shù)和因數(shù)的概念。
這樣的安排,體現(xiàn)了以學(xué)生為本,用學(xué)生已有的經(jīng)驗(yàn)和動(dòng)手操作能力,很好的調(diào)動(dòng)了學(xué)生學(xué)習(xí)的積極性和主動(dòng)性。一方面讓學(xué)生樂于接受,是學(xué)生在展示自己的想法,老師僅僅是組織者;另一方面培養(yǎng)了學(xué)生善于觀察和傾聽他人的想法的良好學(xué)習(xí)態(tài)度。對(duì)于找一個(gè)數(shù)的倍數(shù)比找一個(gè)數(shù)的因數(shù)的方法要容易些,所以我先教學(xué)如何找一個(gè)數(shù)的倍數(shù),在學(xué)生學(xué)會(huì)了找一個(gè)數(shù)的倍數(shù)的方法基礎(chǔ)上,再教學(xué)如何找一個(gè)數(shù)的因數(shù),這樣教學(xué)便于學(xué)生自己探索并總結(jié)歸納出找一個(gè)數(shù)的因數(shù)的方法,體現(xiàn)了讓學(xué)生自主學(xué)習(xí)。
在處理本節(jié)課的.難點(diǎn)找36的因數(shù)時(shí),我原來是放手讓學(xué)生自己去找的。結(jié)果試上時(shí)很多學(xué)生沒有頭緒,無從下手。時(shí)間倒是花去不少,可方法卻沒有多少可行的。我靜下心來尋找原因,找一個(gè)的因數(shù)是學(xué)生以前從未遇到過的問題,自然不知道如何解決。再加上找一個(gè)數(shù)的因數(shù)比找一個(gè)數(shù)的倍數(shù)要難得多,我這樣貿(mào)然地放手,學(xué)生當(dāng)然不知所措了。后來,在處理找36的因數(shù)時(shí),如何做到既不重復(fù)又不遺漏地找36的因數(shù)?我認(rèn)為要對(duì)學(xué)生扶放得當(dāng),要有適當(dāng)?shù)胤觯瑢W(xué)生才能探索出方法。于是,我讓學(xué)生回憶剛才的幾道乘法算式,然后把找一個(gè)數(shù)的倍數(shù)的方法有效的遷移到找一個(gè)數(shù)的因數(shù)中。果然學(xué)生知道了該如何思考后,效果好了很多。
倍數(shù)和因數(shù)教學(xué)反思9
《因數(shù)和倍數(shù)》是人教版小學(xué)數(shù)學(xué)五年級(jí)下冊(cè)第二單元的起始課,也是一節(jié)重要的數(shù)學(xué)概念課,所涉及的知識(shí)點(diǎn)較多,內(nèi)容較為抽象,對(duì)于學(xué)生來說是比較難掌握的內(nèi)容,在這樣的前提下,如何能充分發(fā)揮學(xué)生的主體作用,讓他們自主探索,自己感悟概念的內(nèi)涵,并靈活地運(yùn)用“先學(xué)后教”的模式,達(dá)到課堂的高效,在課堂中我做了以下的嘗試。
一、領(lǐng)會(huì)意圖,做到用教材教。
我覺得作為一名教師,重要的是領(lǐng)會(huì)教材的編寫意圖,靈活的運(yùn)用教材,讓每個(gè)細(xì)節(jié)都能發(fā)揮它應(yīng)有的作用。如教材是利用了一個(gè)簡(jiǎn)單的實(shí)物圖(2行飛機(jī),每行6架;3行飛機(jī),每行4架)引出了要研究的兩個(gè)乘法算式“2×6=12,3×4=12”直接給出了“誰是誰的因數(shù),誰是誰的倍數(shù)”的.概念。這樣做目的有二:一是滲透了從乘法算式中找因數(shù)倍數(shù)的方法,二是利用數(shù)與數(shù)之間的關(guān)系明確的看到因數(shù)倍數(shù)這種相互依存的關(guān)系。
但這樣做仍不夠開放,我是這樣做的:課始并沒有出示主題圖,直接提出問題:“如果有12架飛機(jī),你可以怎樣去排列?”學(xué)生除了能想到圖中的兩種排法還能得到第三種,這樣做是用開放的問題做為誘因,使學(xué)生得到“2×6=12、3×4=12、1×12=12”三個(gè)算式,而這些算式不僅能夠清晰地體現(xiàn)因數(shù)倍數(shù)間的關(guān)系,更是后面“如何求一個(gè)數(shù)的因數(shù)”的方法的滲透和引導(dǎo)?磥盱`活的運(yùn)用教材,深放領(lǐng)會(huì)意圖,才能使教學(xué)更為輕松、高效!
二、模式運(yùn)用,做到靈活自然。
模式是一種思想或是引子,面對(duì)不同的課型,我們應(yīng)該大膽嘗試,不斷的積累經(jīng)驗(yàn),使模式不再是僵化的,機(jī)械的。只要是能促進(jìn)學(xué)生能力形成的東西,我們不能因?yàn)橐\(yùn)用模式而把它們淡化,反之,應(yīng)該想方設(shè)法,在不知不覺中體現(xiàn)出來。
如本課中例1是“求18的因數(shù)有哪些”,例2是“求2的倍數(shù)有哪些”教材的設(shè)計(jì)已經(jīng)能夠體現(xiàn)學(xué)生自主探索知識(shí)的軌跡,那我們何不通過一句簡(jiǎn)短的過渡語讓學(xué)生進(jìn)入到下面的學(xué)習(xí)中呢?而沒有必要非要設(shè)計(jì)出兩個(gè)“自學(xué)指導(dǎo)”讓學(xué)生按步就搬地往下走,而且讓學(xué)生對(duì)比著去感受一個(gè)數(shù)“因數(shù)和倍數(shù)”的求法的不同,比先學(xué)例1再學(xué)例2的方式更容易讓學(xué)生發(fā)現(xiàn)不同,得到方法,加深對(duì)知識(shí)的理解,同時(shí)也更加體現(xiàn)了學(xué)生的自主性,這才是模式的真正目的所在。內(nèi)涵比形式更重要,發(fā)現(xiàn)比引導(dǎo)更有效!
倍數(shù)和因數(shù)教學(xué)反思10
這是一節(jié)概念課,關(guān)于“倍數(shù)和因數(shù)”教材中沒有寫出具體的數(shù)學(xué)意義,只是借助乘法算式來認(rèn)識(shí)倍數(shù)和因數(shù),從而體會(huì)倍數(shù)和因數(shù)的意義,進(jìn)而讓學(xué)生探究尋找一個(gè)數(shù)的倍數(shù)和因數(shù)以及倍數(shù)和因數(shù)的特征。
這部分知識(shí)對(duì)于四年級(jí)學(xué)生而言,沒有什么生活經(jīng)驗(yàn),也談不上有什么新興趣,是一節(jié)數(shù)學(xué)味很濃的概念課,因此為了讓乏味變成有味,在課開始之前,跟同學(xué)們講了韓信點(diǎn)兵的故事,從一個(gè)同余問題的解決讓學(xué)生產(chǎn)生興趣,并告知學(xué)生所用知識(shí)與本節(jié)課所學(xué)知識(shí)有很大關(guān)聯(lián),引導(dǎo)學(xué)生認(rèn)真學(xué)好本節(jié)課的知識(shí)。
在教授倍數(shù)和因數(shù)時(shí),我讓學(xué)生自己動(dòng)手操作,感受不同形狀下所得到的不同乘法算式,通過這些乘法算式認(rèn)識(shí)倍數(shù)和因數(shù),并且讓學(xué)生自己想一道乘法算式,讓同桌用倍數(shù)和因數(shù)說一說,從學(xué)生的'自身素材去理解概念,使學(xué)生對(duì)新知識(shí)印象更深刻,從而使學(xué)生進(jìn)一步理解和掌握倍數(shù)和因數(shù)。但是,在這一環(huán)節(jié)中,由于緊張,忘記讓學(xué)生從“能不能直接說3是因數(shù),12是倍數(shù)”這一反例中體會(huì)倍數(shù)和因數(shù)是一種相互依存的關(guān)系,以致到后面做判斷時(shí)出現(xiàn)很多同學(xué)認(rèn)為“6是因數(shù),24是倍數(shù)”這種說法是正確的。
本節(jié)課的難點(diǎn)是找一個(gè)數(shù)的因數(shù),因此,我將教材中先教找一個(gè)數(shù)的倍數(shù)改成先教找一個(gè)數(shù)的因數(shù),也正因?yàn)檎乙粋(gè)數(shù)的因數(shù)比較有難度,所以,我先讓學(xué)生根據(jù)之前例題中的三個(gè)乘法算式來說一說12的因數(shù),從而讓學(xué)生感受到找一個(gè)數(shù)的因數(shù)可以利用乘法算式來找,并且初步讓學(xué)生感受有序的思想,給學(xué)生一個(gè)方法的認(rèn)知。為了讓學(xué)生得到反思,在找的過程中,請(qǐng)學(xué)生互評(píng),在交流中產(chǎn)生思維的碰撞;請(qǐng)學(xué)生自己糾正,在錯(cuò)誤中產(chǎn)生反思意識(shí),從而能夠提升學(xué)生自主解決問題的能力。
可是,作為一名新教師,對(duì)于課堂中的生成,沒有足夠的經(jīng)驗(yàn)和課堂機(jī)智將其很好的轉(zhuǎn)化成學(xué)生所需達(dá)到的目標(biāo),以致跟預(yù)設(shè)的效果不一致,學(xué)生沒有很充分地得到反思。并且對(duì)于課堂中的一些細(xì)節(jié)問題,處理得還不夠到位。本節(jié)課的教學(xué)對(duì)于我來說是一個(gè)機(jī)會(huì),也是一個(gè)契機(jī),今后,我會(huì)不斷完善教學(xué),總結(jié)經(jīng)驗(yàn)教訓(xùn),在各個(gè)方面嚴(yán)格要求自己,爭(zhēng)取在今后的工作中做的更好!
倍數(shù)和因數(shù)教學(xué)反思11
反思教學(xué)效果總結(jié)了的原因有以下幾點(diǎn):
。ㄒ唬┧?cái)?shù)和合數(shù)的判斷不熟練。一些數(shù)如:49、51、91這些數(shù)看上去是素?cái)?shù),但其實(shí)是合數(shù)。這些數(shù)經(jīng)常被學(xué)生誤認(rèn)為是素?cái)?shù)而導(dǎo)致錯(cuò)誤,原因是這些學(xué)生就簡(jiǎn)單的看看,而不愿意用2、3、5等素?cái)?shù)去嘗試,努力尋找是不是有第3個(gè)因數(shù)存在。
。ǘ┮馑枷嗤,但語句表述不同時(shí),有的學(xué)生就不能正確理解。如:在上面的數(shù)只有兩個(gè)因數(shù)的數(shù)有哪些?其實(shí)這道題目就是問在上面的數(shù)中素?cái)?shù)有哪些。
。ㄈ┯械膶W(xué)生缺少分析理解,研究和判斷的能力,判斷和選擇題的錯(cuò)誤比較多。例如:1的倍數(shù)肯定是奇數(shù)。如果一個(gè)學(xué)生先找到1的倍數(shù),然后根據(jù)數(shù)的特點(diǎn)作出正確的判斷。但有的學(xué)生看到1是個(gè)奇數(shù),然后就簡(jiǎn)單地做出它的倍數(shù)也是奇數(shù)想法。例如:一個(gè)數(shù)的倍數(shù)一定比它的因數(shù)大。如果學(xué)生找一個(gè)數(shù),看看它的最小倍數(shù)是哪個(gè)?找找它的最大因數(shù)是哪個(gè)?這樣不難找到正確的答案。但是有的倍數(shù)簡(jiǎn)單地被題目的意思誤導(dǎo),加上平時(shí)的練習(xí)中還有倍數(shù)一般都是大的,因數(shù)一般都是小的概念,學(xué)生容易誤判。
教學(xué)中,我和學(xué)生有時(shí)太滿足于平時(shí)練習(xí)的結(jié)果,而缺少讓學(xué)生進(jìn)行數(shù)學(xué)思考和表達(dá)能力的過程訓(xùn)練?磥碓谝院蟮腵教學(xué)中,我要繼續(xù)改變教學(xué)觀念,要高度尊重學(xué)生,依靠學(xué)生,把以往教學(xué)中主要依靠教師轉(zhuǎn)變?yōu)橐揽繉W(xué)生。
建議
1、在新知教學(xué)中,注重引導(dǎo)學(xué)生進(jìn)行探究。在本單元中找一個(gè)數(shù)的倍數(shù)和因數(shù),都有比較好的方法。如何通過學(xué)生的探究找到方法,成了教學(xué)的亮點(diǎn)。如“找36的因數(shù)” ,找一個(gè)數(shù)的因數(shù)是本課的難點(diǎn)。應(yīng)該說,找出36的幾個(gè)因數(shù)并不難,難就難在找出36的所有因數(shù)。教學(xué)中,建議教師不要把方法簡(jiǎn)單地告訴學(xué)生,而是讓學(xué)生獨(dú)立去探究,獨(dú)立寫出36的所有因數(shù),在學(xué)生反饋的基礎(chǔ)上教師再引導(dǎo)學(xué)生對(duì)有序和無序作比較,學(xué)生才能在比較、交流中感悟有序思考的必要性和科學(xué)性。交流的過程正是學(xué)生相互補(bǔ)充、相互接納的過程,是對(duì)學(xué)習(xí)內(nèi)容進(jìn)行深加工和重組知識(shí)的過程,是學(xué)生的認(rèn)知不斷走向深入,思維水平不斷提升的過程。這是新知探究階段的思維交流。既是不斷深化理解因數(shù)與倍數(shù)知識(shí)的過程,又是培養(yǎng)學(xué)生良好思維品質(zhì)的過程。給學(xué)生獨(dú)立思考的空間,提出了各自的解法或見解,是思維獨(dú)創(chuàng)性的培養(yǎng);引導(dǎo)學(xué)生一對(duì)一對(duì)有序的找,或從1開始,用除法一個(gè)個(gè)去試,是思維條理性的培養(yǎng);既有遷移于擺方塊的形象思維,又有直接運(yùn)用除法算式的抽象思維,或乘除法口訣的綜合運(yùn)用等,在感受解法多樣性中,培養(yǎng)了學(xué)生思維的靈活性。
2、寓教于樂,游戲中進(jìn)行相應(yīng)的鞏固練習(xí)。本節(jié)課是一節(jié)概念課,內(nèi)容比較枯燥,課本上的練習(xí)形式也比較單一,所以在認(rèn)識(shí)倍數(shù)和因數(shù)后,應(yīng)安排有趣味的游戲,比如數(shù)字轉(zhuǎn)盤游戲,讓學(xué)生看轉(zhuǎn)盤說指針停止時(shí),內(nèi)圈的數(shù)與外圈的數(shù)的關(guān)系,進(jìn)一步認(rèn)識(shí)倍數(shù)和因數(shù),又能從中發(fā)現(xiàn)倍數(shù)和因數(shù)的相互依存的關(guān)系。在學(xué)會(huì)找倍數(shù)和因數(shù)之后也可設(shè)計(jì)游戲,如:“猜猜一位老師的電話號(hào)碼”,在一個(gè)八位數(shù)的號(hào)碼中已知其中四位,根據(jù)有關(guān)倍因數(shù)關(guān)系的問題請(qǐng)學(xué)生找出未知的四位號(hào)碼,以提高學(xué)生學(xué)習(xí)的積極性,稍有難度的練習(xí)給學(xué)有余力的學(xué)生一個(gè)證明自己能力的機(jī)會(huì),讓學(xué)生在數(shù)學(xué)活動(dòng)中體驗(yàn)到數(shù)學(xué)學(xué)習(xí)的趣味性和挑戰(zhàn)性,學(xué)生運(yùn)用所學(xué)知識(shí)解決問題,體會(huì)到了學(xué)習(xí)新知識(shí)后的成就感。
3、教師要注重評(píng)價(jià)的導(dǎo)向作用,讓學(xué)生在評(píng)價(jià)中成長(zhǎng)。在第一課時(shí)學(xué)生交流12的因數(shù)時(shí),教師展示了三位同學(xué)的作業(yè):第一種是無序的,第二種是從小到大有序的,第三種是一對(duì)一對(duì)有序的。接著老師讓第一種方法的學(xué)生說說自己的想法,并讓其他同學(xué)評(píng)論,此時(shí)大多數(shù)學(xué)生的評(píng)價(jià)都認(rèn)為不好,找得缺漏、無序,這時(shí)其實(shí)作為老師是否可以問問這種答案“有沒有值得肯定的地方?”,畢竟找到的這些答案都是正確地,然后再去尋找更好的方法。如果老師能經(jīng)常注意這樣引導(dǎo)評(píng)價(jià),學(xué)生自然而然地意識(shí)到要先看別人的優(yōu)點(diǎn),再看別人的缺點(diǎn),也給了剛才那位學(xué)生一個(gè)心理上的安慰,使他能更積極地投入到學(xué)習(xí)當(dāng)中去。
倍數(shù)和因數(shù)教學(xué)反思12
總的感覺是上好一堂課不容易。當(dāng)確定好內(nèi)容后,我和吳艷、顧志成三人各自備課,第二天放學(xué)后化了整整一個(gè)半小時(shí)討論教案,后又幾經(jīng)修改,但總感到時(shí)間來不及。倍數(shù)和因數(shù)是學(xué)生聞所未聞的兩個(gè)新概念,是純知識(shí)性的內(nèi)容,學(xué)起來比較枯燥。如何使學(xué)生通過四十分鐘愉快輕松的學(xué)習(xí)掌握這乏味的概念性內(nèi)容,如何開頭,各部分之間怎樣銜接,每一個(gè)知識(shí)點(diǎn)采取何種形式呈現(xiàn)、展開,重點(diǎn)如何突出,難點(diǎn)如何突破,那幾天這許多問題始終盤繞在腦海中,課上下來根據(jù)學(xué)生的參與情況,掌握程度可以說達(dá)到了教學(xué)目標(biāo)。我覺得整個(gè)課堂教學(xué)注意了以下幾點(diǎn):
1、捕捉生活與數(shù)學(xué)之間的聯(lián)系,幫助學(xué)生理解概念間的關(guān)系。
試上下來我感覺學(xué)生對(duì)倍數(shù)因數(shù)間的相互依存關(guān)系理解不到位,看著學(xué)生我突然想到可以利用學(xué)生喬雨雷、喬風(fēng)光兄弟間的關(guān)系呀,于是我把生活中的相互依存關(guān)系遷移到數(shù)學(xué)中的倍數(shù)和因數(shù),這樣設(shè)計(jì)自然又貼切,既讓學(xué)生感受到了數(shù)學(xué)與生活的聯(lián)系,初步學(xué)會(huì)從數(shù)學(xué)的角度去觀察事物、思考問題,激發(fā)對(duì)數(shù)學(xué)的興趣,又幫助學(xué)生理解了倍數(shù)因數(shù)之間的相互依存關(guān)系。
2、注意引導(dǎo)學(xué)生進(jìn)行有效的合作學(xué)習(xí)。
動(dòng)手實(shí)踐、自主探索、合作交流是新課程倡導(dǎo)的學(xué)習(xí)方式,公開課不管上的什么內(nèi)容,不管有沒有必要往往都要叫學(xué)生討論,看起來熱熱鬧鬧,其實(shí)有多少學(xué)生真正參與了討論。往往是一組中的優(yōu)等生把答案說出,其他學(xué)生洗耳恭聽。當(dāng)3、2、5的倍數(shù)寫出來后,我問:“整體觀察這幾個(gè)數(shù)的倍數(shù),你認(rèn)為一個(gè)數(shù)的倍數(shù)有什么特點(diǎn)?”首先問題有討論的價(jià)值與必要性,其次當(dāng)問題提出后我先讓學(xué)生獨(dú)立思考,看到學(xué)生陸續(xù)舉手時(shí),再組織學(xué)生討論交流,完善自己的想法。(其實(shí)這是我一貫的做法,必須在每個(gè)學(xué)生獨(dú)立思考的基礎(chǔ)上進(jìn)行合作學(xué)習(xí)。)
3、內(nèi)容環(huán)環(huán)相扣、過度自然流暢。
從生活中的相互依存關(guān)系遷移到數(shù)學(xué)中的倍數(shù)因數(shù),從而揭示課題,引出誰是誰的倍數(shù),誰是誰的因數(shù),到找一個(gè)數(shù)的倍數(shù)或因數(shù),歸納找的方法。整個(gè)教學(xué)過程環(huán)環(huán)緊扣、一氣呵成,通達(dá)順暢。
4、練習(xí)設(shè)計(jì)由易到難,由淺入深,既鞏固了新知,又發(fā)展了思維。
“找朋友”游戲,答案不唯一,學(xué)生思考問題的空間很大,培養(yǎng)了學(xué)生的`發(fā)散思維能力。讓學(xué)生判斷自己的學(xué)號(hào)數(shù)是哪些數(shù)的倍數(shù),老師手里拿了2、3、5幾張數(shù)字卡片,老師出示卡片,如果學(xué)生的學(xué)號(hào)數(shù)是老師出示卡片的倍數(shù)就可以站起來。最后留下了學(xué)號(hào)是1、7、11、13、17、19、23、29、31、37、41、43、47的學(xué)生,讓學(xué)生想辦法如果他們也要站起來,老師出示的卡片上應(yīng)是幾?學(xué)生面對(duì)問題積極思考,享受了數(shù)學(xué)思維的快樂。
疑問:一開始的擺12個(gè)小正方形拼成長(zhǎng)方形,得出三個(gè)積是12的乘法算式,我想這里的操作可否省去?一方面用去時(shí)間較多,對(duì)教學(xué)內(nèi)容關(guān)系不大,如果說是培養(yǎng)操作能力也不是在這個(gè)時(shí)候。另一方面這堂課練習(xí)時(shí)間比較少,擠出的時(shí)間可用于練習(xí)。
我想如果我們每堂課都能精心設(shè)計(jì)的話,對(duì)學(xué)生對(duì)我們教師都會(huì)有很大的提高。
倍數(shù)和因數(shù)教學(xué)反思13
這節(jié)課我在教學(xué)中充分體現(xiàn)以學(xué)生為主體,為學(xué)生的探究發(fā)現(xiàn)提供足夠的時(shí)空和適當(dāng)?shù)闹笇?dǎo),同時(shí),也為提高課堂教學(xué)的有效性,我在本課的教學(xué)中體現(xiàn)了自主化、活動(dòng)化、合作化和情意化,具體做到了以下幾點(diǎn):
一、操作實(shí)踐,舉例內(nèi)化,認(rèn)識(shí)倍數(shù)和因數(shù)
我創(chuàng)設(shè)有效的數(shù)學(xué)學(xué)習(xí)情境,數(shù)形結(jié)合,變抽象為直觀。首先讓學(xué)生動(dòng)手操作把12個(gè)小正方形擺成不同的長(zhǎng)方形,再讓學(xué)生寫出不同的乘法算式,借助乘法算式引出因數(shù)和倍數(shù)的意義。這樣在學(xué)生已有的知識(shí)基礎(chǔ)上,從動(dòng)手操作,直觀感知,使概念的揭示突破了從抽象到抽象,從數(shù)學(xué)到數(shù)學(xué),讓學(xué)生自主體驗(yàn)數(shù)與形的結(jié)合,進(jìn)而形成因數(shù)與倍數(shù)的意義.使學(xué)生初步建立了“因數(shù)與倍數(shù)”的概念。這樣,充分學(xué)習(xí)、利用、挖掘教材,用學(xué)生已有的數(shù)學(xué)知識(shí)引出了新知識(shí),減緩難度,效果較好。
二、自主探究,意義建構(gòu),找倍數(shù)和因數(shù)
整個(gè)教學(xué)過程中力求體現(xiàn)學(xué)生是學(xué)習(xí)的主體,教師只是教學(xué)活動(dòng)的組織者、指導(dǎo)者、參與者。整節(jié)課中,教師始終為學(xué)生創(chuàng)造寬松的學(xué)習(xí)氛圍,讓學(xué)生自主探索,學(xué)習(xí)理解倍數(shù)和因數(shù)的意義,探索并掌握找一個(gè)數(shù)的倍數(shù)和因數(shù)的方法,引導(dǎo)學(xué)生在充分的動(dòng)口、動(dòng)手、動(dòng)腦中自主獲取知識(shí)。
新課程提出了合作學(xué)習(xí)的學(xué)習(xí)方式,教學(xué)中的多次合作不僅能讓學(xué)生在合作中發(fā)表意見,參與討論,獲得知識(shí),發(fā)現(xiàn)特征,而且還很好地培養(yǎng)了學(xué)生的合作學(xué)習(xí)能力,初步形成合作與競(jìng)爭(zhēng)的意識(shí)。
找一個(gè)數(shù)因數(shù)的方法是本節(jié)課的難點(diǎn),在教學(xué)過程中讓學(xué)生自主探索,在隨后的巡視中發(fā)現(xiàn)有很多的學(xué)生完成的不是很好,我就決定先交流在讓學(xué)生尋找,這樣就用了很多時(shí)間,最后就沒有很多的時(shí)間去練習(xí),我認(rèn)為雖然時(shí)間用的過多,但我認(rèn)為學(xué)生探索的比較充分,學(xué)生也有收獲。如何做到既不重復(fù)又不遺漏地找36的因數(shù),對(duì)于剛剛對(duì)倍數(shù)因數(shù)有個(gè)感性認(rèn)識(shí)的學(xué)生來說有一定困難,這里可以充分發(fā)揮小組學(xué)習(xí)的優(yōu)勢(shì)。先讓學(xué)生自己獨(dú)立找36的因數(shù),我巡視了一下三分之一的學(xué)生能有序的思考,多數(shù)學(xué)生寫的算式不按一定的次序進(jìn)行。接著讓學(xué)生在小組里討論兩個(gè)問題:用什么方法找36的因數(shù),如何找不重復(fù)也不遺漏。在小組交流的過程中,學(xué)生對(duì)自己剛才的方法進(jìn)行反思,吸收同伴中好的方法,這時(shí)老師再給予有效的指導(dǎo)和總結(jié)。
三、變式拓展,實(shí)踐應(yīng)用---—促進(jìn)智能內(nèi)化
練習(xí)的設(shè)計(jì)不僅緊緊圍繞教學(xué)重點(diǎn),而且注意到了練習(xí)的層次性,趣味性。在游戲中,師生互動(dòng),激活了學(xué)生的情感,學(xué)生的思維不斷活躍起來,學(xué)生不僅參與率高,而且還較好地鞏固了新知。課上,我能注重自始至終關(guān)注學(xué)生學(xué)習(xí)興趣、學(xué)習(xí)熱情、學(xué)習(xí)自信等情感因素的培養(yǎng),并及時(shí)讓學(xué)生感受到學(xué)習(xí)成功的喜悅,享受數(shù)學(xué),感悟文化魅力。
《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,是比較抽象的,本冊(cè)教材在引入因數(shù)和倍數(shù)的概念時(shí)與以往的教材有所不同。本節(jié)課是這一單元的的教學(xué)重點(diǎn)。為讓學(xué)生很好的感受因數(shù)與倍數(shù)的意義,能夠熟練的找出一個(gè)數(shù)的因數(shù)與倍數(shù),靈活地處理了教材,分為兩課時(shí)進(jìn)行。第一課時(shí)只讓學(xué)生認(rèn)識(shí)了因數(shù)和倍數(shù)的`意義及找一個(gè)數(shù)的因數(shù)的方法。
一、設(shè)計(jì)情境,引起思考。
創(chuàng)造性的使用教材,引起學(xué)生思考,板書15÷0.3=50,1.5÷3=0.5,1.5÷0.3=5,15÷3=5引出除盡和整除的含義,從而明確了因數(shù)倍數(shù)的研究范圍,進(jìn)而理解決因數(shù)與倍數(shù)的意義。對(duì)于因數(shù)與倍數(shù)的依存關(guān)系,學(xué)生在理解時(shí)比較抽象,我就放到具體算式里,算式由學(xué)生舉例,反復(fù)去說誰是誰的倍數(shù),誰是誰的因數(shù),在課堂中反復(fù)強(qiáng)調(diào),幫助學(xué)生認(rèn)真理解辨析,從而理解了因數(shù)與倍數(shù)之間的相互依存關(guān)系。學(xué)生一節(jié)課下來對(duì)這組概念就理解透徹了,就不會(huì)模糊了。
二、引導(dǎo)學(xué)生探求找因數(shù)的方法。
如何找一個(gè)數(shù)的因數(shù)是這節(jié)課的又一個(gè)重點(diǎn),首先讓學(xué)生找出24的因數(shù),由于個(gè)人經(jīng)驗(yàn)和思維的差異,出現(xiàn)了不同的方法與答案,在探索這些方法和答案的過程中,學(xué)生明白了如何求出一個(gè)數(shù)的因數(shù)的方法,從而掌握了知識(shí)點(diǎn)。
根據(jù)學(xué)生的學(xué)習(xí)特點(diǎn),靈活的應(yīng)用教材,使之服務(wù)于教學(xué),讓教學(xué)有效的進(jìn)行,才能達(dá)到教學(xué)的目的。在探索找一個(gè)數(shù)的因數(shù)的方法時(shí),為了讓學(xué)生更加形象地體會(huì)出“要按照一定的順序去找”才不會(huì)遺漏和重復(fù),充分運(yùn)用多媒體,通過演示18、24、77、1的因數(shù),讓學(xué)生直觀地看到了“順序”,學(xué)會(huì)有序思考,體會(huì)到了求一個(gè)數(shù)的因數(shù)的方法。與此同時(shí)學(xué)生直觀觀察發(fā)現(xiàn)一個(gè)數(shù)的因數(shù)都有1和它本身,最小的因數(shù)是1,最大的因數(shù)是它本身,不是數(shù)字越大因數(shù)個(gè)數(shù)就越多,一個(gè)數(shù)的因數(shù)的個(gè)數(shù)是有限的等等重要相關(guān)知識(shí),這些發(fā)現(xiàn)與課堂練習(xí)息息相關(guān),形成本節(jié)課完整的知識(shí)體系,還為后面的學(xué)習(xí)做好鋪墊。課堂練習(xí)完成的很好,起到學(xué)以致用的學(xué)習(xí)效果。培養(yǎng)學(xué)生的概括能力、歸納能力,抽象能力得以進(jìn)一步發(fā)展。
倍數(shù)和因數(shù)教學(xué)反思14
本節(jié)課的內(nèi)容是在學(xué)生已經(jīng)學(xué)習(xí)了一定的整數(shù)知識(shí)(包括整數(shù)的知識(shí)、整數(shù)的四則運(yùn)算及其應(yīng)用)的基礎(chǔ)上,進(jìn)一步認(rèn)識(shí)整數(shù)的性質(zhì)。本單元所涉及的`因數(shù)和倍數(shù)都是初等數(shù)論的基礎(chǔ)知識(shí)。
成功之處:
1.理解分類標(biāo)準(zhǔn),明確因數(shù)和倍數(shù)的含義。在例1教學(xué)中,首先根據(jù)不同的除法算式讓學(xué)生進(jìn)行分類,同時(shí)思考其標(biāo)準(zhǔn)依據(jù)是什么。通過學(xué)生的獨(dú)立思考和小組交流學(xué)生得出:第一種是分為兩類:一類是商是整數(shù),另一類是商是小數(shù);第二種是分為三類:一類商是整數(shù),一類是小數(shù),另一類是循環(huán)小數(shù)。究竟怎樣分類讓學(xué)生在爭(zhēng)論與交流中達(dá)成一致答案分為兩類。然后根據(jù)第一類情況得出倍數(shù)和因數(shù)的含義,特別強(qiáng)調(diào)的是對(duì)于因數(shù)和倍數(shù)的含義要符合兩個(gè)條件:一是必須在整數(shù)除法中,二是必須商是整數(shù)而沒有余數(shù)。具備了這兩個(gè)條件才能說被除數(shù)是除數(shù)的倍數(shù),除數(shù)是被除數(shù)的因數(shù)。
2.厘清概念倍數(shù)和幾倍,注重強(qiáng)調(diào)倍數(shù)和因數(shù)的相互依存性。在教學(xué)中可以直接告訴學(xué)生因數(shù)和倍數(shù)都不能單獨(dú)存在,不能說2是因數(shù),12是倍數(shù),而必須說誰是誰的因數(shù),誰是誰的倍數(shù)。對(duì)于倍數(shù)與幾倍的區(qū)別:倍數(shù)必須是在整數(shù)除法中進(jìn)行研究,而幾倍既可以在整數(shù)范圍內(nèi),也可以在小數(shù)范圍內(nèi)進(jìn)行研究,它的研究范圍較之倍數(shù)范圍大一些。
不足之處:
1.練習(xí)設(shè)計(jì)容量少了一些,導(dǎo)致課堂有剩余時(shí)間。
2. 對(duì)因數(shù)和倍數(shù)的含義還應(yīng)該進(jìn)行歸納總結(jié)上升到用字母來表示。
再教設(shè)計(jì):
1.根據(jù)課本的練習(xí)相應(yīng)的進(jìn)行補(bǔ)充。
2.因數(shù)和倍數(shù)的含義用總結(jié)為a÷b=c(a、b、c均為非0自然數(shù)),a是b和c的倍數(shù),b和c是a的因數(shù)。
倍數(shù)和因數(shù)教學(xué)反思15
不知不覺,我們又進(jìn)行了第二單元的學(xué)習(xí)。第二單元的內(nèi)容是《因數(shù)與倍數(shù)》,這部分內(nèi)容與老教材相比變化很大,我覺得第二、四單元是本冊(cè)教材中變化最大的單元,要引起足夠的重視。
1、以往認(rèn)識(shí)因數(shù)和倍數(shù)是借助于整除現(xiàn)象,“X能被X整除,或X能整除X”,所以X是X的因數(shù),X是X的倍數(shù),F(xiàn)在的教材完全不同了,2X3=6,所以2和3是6的因數(shù),6是2和3的倍數(shù),借助整除的模式na=b直接引出因數(shù)和倍數(shù)的概念。
2、以往數(shù)學(xué)教材中,概念教學(xué)的'量很大。數(shù)的整除,因數(shù)(老教材稱為約數(shù)),倍數(shù),2、5、3的倍數(shù)的特征(老教材稱為能被2、5、3整除的數(shù)的特征),質(zhì)數(shù),倒數(shù),分解質(zhì)因數(shù),最大公因數(shù)(以往的教材中稱為最大公約數(shù)),最小公倍數(shù)等內(nèi)容共同編排在后面,合為一個(gè)單元。而現(xiàn)在新教材本單元只安排了因數(shù)和倍數(shù),2、5、3的倍數(shù)的特征,質(zhì)數(shù)合數(shù)。其它內(nèi)容安排在了第四單元《分?jǐn)?shù)的意義和性質(zhì)》,借助約分引出公約數(shù)、公倍數(shù)的學(xué)習(xí),改變了概念多而集中,抽象程度過高的現(xiàn)象。
3、以往求最大公約數(shù),最小公倍數(shù)時(shí),采用的方法是唯一的、固定的,也就是有短除法分解質(zhì)因數(shù),而新教材中鼓勵(lì)方法多樣化,不把它作為正式的內(nèi)容教學(xué),而是出現(xiàn)在教材的你知道嗎中?不那么呆板了,尊重學(xué)生的思維差異。
可見,編者為體現(xiàn)新課標(biāo)精神對(duì)本部分內(nèi)容作了精心的調(diào)整,煞費(fèi)苦心,可是學(xué)完了本單元的第一部分和第二部分內(nèi)容,我對(duì)本單元的學(xué)習(xí)內(nèi)容有了小小的疑問。這一單元內(nèi)容分為因數(shù)和倍數(shù),2、5、3的倍數(shù)的特征,質(zhì)數(shù)和合數(shù),我覺得第一部分內(nèi)容和第三部分內(nèi)容的關(guān)系很大,連續(xù)性強(qiáng)。知道了什么是因數(shù)和倍數(shù),也會(huì)找一個(gè)數(shù)的因數(shù)和倍數(shù)了,那么就應(yīng)該從找因數(shù)和個(gè)數(shù)問題上學(xué)習(xí)質(zhì)數(shù)和合數(shù)。教材對(duì)質(zhì)數(shù)和合數(shù)的學(xué)習(xí)內(nèi)容設(shè)計(jì)較好,開門見山讓學(xué)生找出1-20各數(shù)的因數(shù),觀察因數(shù)的個(gè)數(shù)有什么規(guī)律,再引出質(zhì)數(shù)和合數(shù)的學(xué)習(xí)。可為什么在中間突然加上了2、5、3的倍數(shù)的特征?這樣感覺前后內(nèi)容失去了聯(lián)系,不夠自然流暢。所以我覺得可以把二三部分內(nèi)容作為適當(dāng)?shù)恼{(diào)整,即因數(shù)和倍數(shù),質(zhì)數(shù)和合數(shù),2、5、3的倍數(shù)的特征會(huì)比較好一些。
【倍數(shù)和因數(shù)教學(xué)反思】相關(guān)文章:
因數(shù)和倍數(shù)的教學(xué)反思02-14
倍數(shù)和因數(shù)的教學(xué)反思03-13
《倍數(shù)和因數(shù)》教學(xué)反思04-11
《因數(shù)和倍數(shù)》教學(xué)反思02-06
《因數(shù)和倍數(shù)》數(shù)學(xué)教學(xué)反思02-09