《解方程》教學(xué)反思
身為一名優(yōu)秀的人民教師,我們要有一流的課堂教學(xué)能力,通過教學(xué)反思可以有效提升自己的課堂經(jīng)驗(yàn),優(yōu)秀的教學(xué)反思都具備一些什么特點(diǎn)呢?下面是小編精心整理的《解方程》教學(xué)反思,僅供參考,希望能夠幫助到大家。
《解方程》教學(xué)反思1
本節(jié)課的教學(xué)重點(diǎn)和難點(diǎn)是:
理解“方程的解”、“解方程”兩個(gè)概念;會運(yùn)用天平平衡的道理解簡單的方程。在教學(xué)環(huán)節(jié)的設(shè)計(jì)和安排上,盡量為突破教學(xué)重點(diǎn)和難點(diǎn),因此我進(jìn)行了大膽的嘗試,在講解方程的解時(shí),新課程解方程教學(xué)與以往的最大不同就是,不是利用加減乘除各部分間的關(guān)系來解,而是利用天平保持平衡的原理,也就是我們常說的等式的基本性質(zhì)解方程。教學(xué)中我先利用演示了天平兩端同時(shí)加上或減去同樣的重量,同時(shí)擴(kuò)大或縮小相同倍數(shù),天平任然保持平衡,目的是讓學(xué)生直觀感受天平保持平衡原理,為學(xué)生遷移類推到方程中打基礎(chǔ)。然后出示例1,讓學(xué)生列出方程x+3=9,用演示x+3個(gè)方塊=9個(gè)方塊,提問:“如果要稱出x有多少塊,改怎么辦?”,引導(dǎo)學(xué)生思考,只要將天平兩端同時(shí)減去3個(gè)方塊,天平仍平衡,得到一個(gè)x相當(dāng)于6個(gè)方塊,從而得到x=6。你能把稱的過程用算式表示出來嗎?大部分學(xué)生快速的寫出了我想要的答案:x+3-3=9-3,于是我問:為什么方程兩邊要同時(shí)減去3,而不減去其它數(shù)呢?
學(xué)生沉默,終于有兩雙小手舉起來了,“為了得到一個(gè)x得多少”,我又強(qiáng)調(diào)了一遍,我們的目標(biāo)是求一個(gè)x的多少,所以要把多余的3減去。在此基礎(chǔ)上我引導(dǎo)學(xué)生總結(jié)天平保持平衡的'道理,得到等式的基本性質(zhì):方程的兩邊同時(shí)加上或減去相同的數(shù),除以或乘上同一個(gè)不為0的數(shù),方程兩邊仍然相等。 另外我還要求學(xué)生掌握加、減、乘、除法各部分之間的關(guān)系,然后利用:一個(gè)加數(shù)=和-另一個(gè)加數(shù);被減數(shù)=減數(shù)+差等關(guān)系來求出方程中的未知數(shù)。在做練習(xí)時(shí)我發(fā)現(xiàn)大部分的學(xué)生在解方程的時(shí)候,還是運(yùn)用了加、減法各部分間的關(guān)系來求出方程中的未知數(shù),只有個(gè)別學(xué)生懂得運(yùn)用等式的性質(zhì)來求出方程中的未知數(shù)。在講授“解方程”定義概念時(shí),我主要從教材思想出發(fā),通過讓學(xué)生說出采用各自不同的方法求解方程的過程叫解方程,使方程左右兩邊相等的未知數(shù)的值,叫做方程的解。
《解方程》教學(xué)反思2
這節(jié)課,先復(fù)習(xí)了方程的概念后,馬上讓學(xué)生說說方程需要滿足幾個(gè)條件,讓學(xué)生意識到方程是一種特殊的未知數(shù),然后出判斷題,讓學(xué)生進(jìn)一步加深理解方程的意義,并讓學(xué)生明白等式和方程的區(qū)別聯(lián)系,緊接對有關(guān)方程的知識進(jìn)行梳理,構(gòu)建網(wǎng)絡(luò)。并解決實(shí)際問題。
本節(jié)課的教學(xué)目標(biāo)是結(jié)合具體情境,了解方程的含義以及會用方程表示簡單情境中的等量關(guān)系。在教學(xué)的過程中,我設(shè)計(jì)導(dǎo)學(xué)案,先課件出示幾個(gè)情境圖,讓學(xué)生從生活中的蹺蹺板引入,看清情境圖。讓孩子們從中找出數(shù)學(xué)信息,從而找到等量關(guān)系,讓孩子用自己的語言進(jìn)行描述,嘗試著列出方程。知道了什么是等式,接著在交流書本的三個(gè)情境圖,逐漸加大難度。多請幾位孩子說說他們找到的等量關(guān)系。嘗試列出等式。然后觀察列出交流,從而知道含有未知數(shù)的等式叫方程。做練習(xí)進(jìn)行鞏固如何找等量關(guān)系,從而列出方程。本節(jié)課,我力求讓學(xué)生通過自主探索,利用生活的例子,讓每個(gè)學(xué)生都有觀察、作分析、思考的機(jī)會,提供給學(xué)生一個(gè)廣泛的,自由的活動空間,讓學(xué)生大膽嘗試,探索,感受數(shù)學(xué)的趣味。學(xué)生也都表現(xiàn)得比較積極,通過同桌交流等形式,找出等量關(guān)系,列方程時(shí),同學(xué)們用不同的方式列出了式子,有些學(xué)生可能還受到舊知識的影響,把要求的未知數(shù)單獨(dú)放在了等式一邊,當(dāng)時(shí)我雖然告訴孩子們方程不能這樣列,但從某些后進(jìn)生做的練習(xí)來看要轉(zhuǎn)變過來還是有些困難,我想,可能是我沒能把書本第一個(gè)出現(xiàn)天平的情境圖講的還不夠透徹,不能真正掌握找出等量關(guān)系的方法。整堂課當(dāng)中,感覺對后進(jìn)生的'關(guān)注度不夠,如果多加關(guān)注,可能可以找出錯誤資源,然后教師再加以引導(dǎo),讓同學(xué)們能更好的快速找出等量關(guān)系,更快的列出方程。最后,對自己比較不滿意的是,1、學(xué)生說的問題與我設(shè)想的有出入。2、學(xué)生展示的時(shí)候不大膽。流程走完了,留給學(xué)生的空間太少了。
想讓學(xué)生有個(gè)輕松愉悅的學(xué)習(xí)氛圍,但可能我還需要一些時(shí)間,希望以后能上出讓學(xué)生輕松愉悅的數(shù)學(xué)課。
《解方程》教學(xué)反思3
有昨天加減法方程作鋪墊,今天乘除法方程的解答可以說是順?biāo)浦,毫不費(fèi)力。學(xué)生完全能夠通過遷移自主探索出解法。但令我頭痛的是如何引導(dǎo)學(xué)生會解形如a-x=b及a÷x=b方程。
本以為按新課標(biāo)教材這兩類方程小學(xué)階段不用掌握,但在學(xué)期初教材分析會上教研員明確指明:這兩類方程教師必須作為例題向?qū)W生補(bǔ)充講解,且屬于學(xué)生必會、考試必考內(nèi)容。原因如下:1、在列方程解決實(shí)際問題時(shí),學(xué)生中往往會出現(xiàn)以上兩種類型方程,教師難以回避。2、如果教師有意回避,會使學(xué)生產(chǎn)生等式的基本性質(zhì)只適用于部分方程的錯誤理解。
基于上述原因,我今天在教學(xué)完例2后為學(xué)生補(bǔ)充了相應(yīng)內(nèi)容,但教學(xué)效果較差。雖然許多學(xué)生能根據(jù)加減乘除各部分之間的關(guān)系推導(dǎo)出X的值,但當(dāng)要求他們根據(jù)等式的性質(zhì)來解答時(shí),嘗試成功。通過指導(dǎo),全班也只有50%左右的學(xué)生基本掌握解答的方法。分析此次教學(xué)失敗的原因可能是安排的時(shí)機(jī)還不夠成熟。因?yàn)閷W(xué)生剛接觸解方程沒多久,還須一段時(shí)間鞏固教材中最基本的常見方程類型,而今天補(bǔ)充的兩種類型雖然與例題一樣,都是根據(jù)等式的基本性質(zhì),但在解答第一步時(shí)不再是思考“怎樣才能使天平左邊只剩X,而保持天平平衡”的問題了。學(xué)困生聽完拓展練習(xí)后,作業(yè)中出現(xiàn)明顯混淆的現(xiàn)象。如5X=1.5本應(yīng)根據(jù)等式的'性質(zhì)直接將等號兩邊同時(shí)除以5求解的,可卻有學(xué)生先將等式兩邊同時(shí)除以X,變成了“1.5÷X=5”, 這可真是越變越復(fù)雜。
值得思考的是,如果必須兩教a-x=b及a÷x=b兩類方程,你們覺得是按加減乘除法各部分之間的關(guān)系教好呢,還是按等式的性質(zhì)教學(xué)好呢?
《解方程》教學(xué)反思4
縱觀整節(jié)課教學(xué),我認(rèn)為已經(jīng)基本把握教材的重難點(diǎn)。在講解“方程的解”定義時(shí),能從驗(yàn)算例子答案出發(fā),讓學(xué)生體會到“方程左右兩邊相等”的特征,從而能更好地理解“方程的解”的定義。
在講授“解方程”定義概念時(shí),我主要從教材思想出發(fā),通過讓學(xué)生說出采用各自不同的方法求解方程的解,讓學(xué)生明白“解方程的各種方法,目的只有一個(gè),那就是求出解,但不同的方法有自身不同的求解過程”著重讓學(xué)生理解“求解過程”。
在這基礎(chǔ)上,讓學(xué)生討論發(fā)現(xiàn)兩個(gè)概念定義之間的區(qū)別。
在講授“解方程:X+7=13”例題時(shí),我安排一個(gè)成績中等的學(xué)生上來解答(因?yàn)槭切抡n,學(xué)生還沒有接觸過正確規(guī)范的書寫格式,學(xué)生的求解方法和過程步驟,能代表整個(gè)班級的情況。況且學(xué)生的求解過程能起到反例的作用,為下面比較教學(xué)——從對比中認(rèn)識正確的求解過程做好鋪墊)
板書正確書寫格式后,讓學(xué)生通過比較發(fā)現(xiàn)該如何正確規(guī)范地求解方程的解。
整節(jié)課教學(xué)存在幾點(diǎn)不足:
1、學(xué)生課堂練習(xí)量少。這與定義的教學(xué)花費(fèi)太多時(shí)間有關(guān)。
2、對學(xué)生新課之前的求解方程的解的方法缺少關(guān)注。解方程是可以有很多方法的,需要鼓勵學(xué)生的多向發(fā)散思維。
3、教師課堂上雖然提到“對于一個(gè)X的值,它究竟是不是方程的解呢?為什么?”,但還是缺乏相關(guān)練習(xí),因?yàn)檫@一內(nèi)容對理解“方程的解”有極強(qiáng)的意義。
《方程的意義》這節(jié)課與學(xué)生的生活有密切聯(lián)系,通過本節(jié)課的學(xué)習(xí),要使學(xué)生經(jīng)歷從實(shí)際問題中總結(jié)概括出數(shù)學(xué)概念的過程。讓學(xué)生初步了解方程的意義,理解方程的概念,感受方程思想。使學(xué)生經(jīng)歷從生活情境到方程概念的建立過程,培養(yǎng)學(xué)生觀察、猜想、驗(yàn)證、分類、抽象、概括、應(yīng)用等能力。通過自主探究,合作交流等數(shù)學(xué)活動,激發(fā)學(xué)生的.興趣,所以我在教學(xué)設(shè)計(jì)的過程中十分重視學(xué)生原有的知識基礎(chǔ),用直觀手法向抽象過渡,用遞進(jìn)形式層層推進(jìn),讓學(xué)生經(jīng)歷一個(gè)知識形成的過程,并盡可能讓他們用語言表達(dá)描述出自己對學(xué)習(xí)過程中的理解,最后形成新的知識脈絡(luò)。下面就結(jié)合這節(jié)課,談?wù)勎以诮虒W(xué)中的做法和看法。
一、復(fù)習(xí)導(dǎo)入,激趣揭題
該環(huán)節(jié)主要復(fù)習(xí)與新知識有間接聯(lián)系的舊知識,為學(xué)習(xí)新知識鋪墊搭橋,以舊引新,方程是表達(dá)實(shí)際問題數(shù)量關(guān)系的一種數(shù)學(xué)模型,是在學(xué)生熟悉了常見的數(shù)量關(guān)系,能夠用字母表示數(shù)的基礎(chǔ)上教學(xué)的,因此開課伊始我結(jié)合與學(xué)生有關(guān)的一些生活現(xiàn)象出示了一組題,要求學(xué)生用含有字母的式子表示出來。這些題的出現(xiàn)即能讓學(xué)生復(fù)習(xí)鞏固以前所學(xué)的知識也能讓學(xué)生體會到我們生活中有很多現(xiàn)象都能用式子表示出來,激起學(xué)生的學(xué)習(xí)興趣,引出這節(jié)課的學(xué)習(xí)內(nèi)容,這樣的開課很實(shí)際,很干脆,也很有用。
二、實(shí)踐操作,建立方程模型
1.用天平創(chuàng)設(shè)情境直觀形象,有助學(xué)生理解式子的意思
等式是一個(gè)數(shù)學(xué)概念。如果離開現(xiàn)實(shí)背景出現(xiàn)都是已知數(shù)組成的等式,雖然可以通過計(jì)算體會相等,但枯躁乏味,學(xué)生不會感興趣。如果離開現(xiàn)實(shí)情境出現(xiàn)含有未知數(shù)的等式,學(xué)生很難體會等式的具體含義。天平是計(jì)量物體質(zhì)量的工具,但它也可以通過平衡或者不平衡判斷出兩個(gè)物體的質(zhì)量是否相等,天平圖創(chuàng)設(shè)情境,利用鮮明的直觀形象寫出表示相等的式子和表示不相等的式子,可以幫助學(xué)生理解式子的意思,也充分利用了教材的主題圖。
2、自主操作,提高能力,激發(fā)興趣
在探究方程的意義時(shí)我特意給學(xué)生提供操作天平平衡的不同材料,讓學(xué)生分組實(shí)踐,通過操作、觀察天平的狀態(tài)得到許多不同的式子,由于材料不同,每個(gè)組所得的式子也不同,有的全是已知數(shù)的式子,有的是含有未知數(shù)的式子,多種多樣的式子激起學(xué)生的探究欲望激發(fā)學(xué)生觀察興趣。
三、實(shí)際運(yùn)用,升華提高
在練習(xí)設(shè)計(jì)中由易到難,由淺入深,使學(xué)生的思維不斷發(fā)展,使學(xué)生對于方程意義的理解更為深刻,特別使讓學(xué)生自由創(chuàng)作方程這一練習(xí)題,既讓學(xué)生應(yīng)用了知識又培養(yǎng)了學(xué)生的創(chuàng)新思維。
本課時(shí)教學(xué)設(shè)計(jì),改變了傳統(tǒng)學(xué)習(xí)方式,利用課本的靜態(tài)資源通過現(xiàn)代化教學(xué)手段,把數(shù)學(xué)情景動態(tài)化,大大激發(fā)了學(xué)生的學(xué)習(xí)興趣,充分體現(xiàn)了以學(xué)生為主,讓學(xué)生獨(dú)立思考,不斷歸納,把學(xué)生從被動地接受知識轉(zhuǎn)為自己探究,為學(xué)生提供了自主探究,合作交流的空間。在學(xué)習(xí)中體會到了學(xué)習(xí)數(shù)學(xué)的樂趣,在獲取知識的同時(shí),情感態(tài)度,能力等方面都得到發(fā)展。當(dāng)然這節(jié)課還存在一些問題,比如對等式與方程的關(guān)系突出得不夠,讀學(xué)生“說”的訓(xùn)練不夠,應(yīng)該給學(xué)生更多的表述的機(jī)會。
《解方程》教學(xué)反思5
《解方程》是學(xué)生接觸方程以來的第一堂計(jì)算課,理解“方程的解”、“解方程”兩個(gè)概念;會運(yùn)用天平平衡的道理解簡單的方程。本著孩子比較感興趣的基礎(chǔ)上,本節(jié)課我采用的是課前預(yù)習(xí),課上交流的形式進(jìn)行,整節(jié)課大多數(shù)孩子在預(yù)習(xí)的基礎(chǔ)上能夠掌握方程的解法,但是個(gè)別孩子沒有掌握,F(xiàn)反思如下:
1、出示預(yù)習(xí)提綱,讓孩子預(yù)習(xí)有根據(jù)。
為讓孩子形成自覺的學(xué)習(xí)習(xí)慣,師指導(dǎo)孩子進(jìn)行預(yù)習(xí),出示了以下三個(gè)問題:
一是什么是方程的解?舉例說明。
二是什么是解方程?你是根據(jù)什么來解方程?
三是如何進(jìn)行方程的檢驗(yàn)?
好多孩子能夠?qū)@幾個(gè)問題進(jìn)行探究,并對意義理解比較深刻。
2、課上交流。
交流是學(xué)生思維火花的碰撞。對于什么是方程的解,孩子們舉例子,根據(jù)例題來詮釋方程的解的意義。在進(jìn)行交流根據(jù)什么來解方程的環(huán)節(jié)中,孩子們各抒已見,有的'是用加法中各部分間的關(guān)系,有的是用等式的性質(zhì),還有的還接口答。依次把方法展示給大家,讓孩子明白方程的解的意義和解方程的過程。再確定統(tǒng)一的解答方法,這個(gè)環(huán)節(jié)孩子興趣很高,大部分孩子能夠?qū)W會利用等式的性質(zhì)進(jìn)行解方程。整個(gè)的環(huán)節(jié)讓孩子在探究中發(fā)現(xiàn)規(guī)律,找到方法,學(xué)生學(xué)的開心,對于概念的理解也很扎實(shí)。
《解方程》教學(xué)反思6
五年級第四單元教材的設(shè)計(jì)打破了傳統(tǒng)的教學(xué)方法。在以前人教版教材中,學(xué)著解方程之前首先要求學(xué)生掌握加、減、乘、除法各部分之間的關(guān)系,然后利用:一個(gè)加數(shù)=和-另一個(gè)加數(shù);被減數(shù)=減數(shù)+差等關(guān)系來求出方程中的未知數(shù)。而新教材則是借用天平游戲使學(xué)生首先感悟“等式”,知道“等式兩邊都加上或減去同一個(gè)數(shù),等式仍然成立”這個(gè)規(guī)律,這樣才能從真正意義上很好地揭示方程的意義,進(jìn)而學(xué)會解方程,還能使之與中學(xué)的移項(xiàng)解方程建立起聯(lián)系。
在教學(xué)前,由于我個(gè)人比較偏好于傳統(tǒng)的教學(xué)方法,總覺得用等式的性質(zhì)解方程比較麻煩。為了轉(zhuǎn)變自己的`教學(xué)思想,更新教學(xué)觀念,我深入了解新教材的涵意——方程是一個(gè)一個(gè)等式,是一個(gè)數(shù)學(xué)模型,是抽象的,而天平是一個(gè)具體的東西,利用天平這樣的事物原形來揭示等式的性質(zhì),把抽象的解方程的過程用形象化的方式表現(xiàn)出來,使學(xué)生更好的理解解方程的過程是一個(gè)等式的恒等變形。并能站在“學(xué)生是學(xué)著的主人”和“教師是學(xué)著的組織者、引導(dǎo)者與合作者”的這一角度上,()為學(xué)生創(chuàng)設(shè)學(xué)著此課的情境,通過直觀演示,充分給學(xué)生提供小組交流的機(jī)會。在教學(xué)的整個(gè)過程中,重點(diǎn)突出了“等式”與“等式兩邊都加上或減去同一個(gè)數(shù),等式仍然成立”這個(gè)規(guī)律,不斷對孩子們進(jìn)行潛移默化地滲透,促使絕大部分的學(xué)生都能靈活地運(yùn)用此規(guī)律來解方程。從而,我驚喜地發(fā)現(xiàn)孩子們的學(xué)著活動是那么的有滋有味,進(jìn)而使我很順利地就完成了本課的教學(xué)任務(wù)。
《解方程》教學(xué)反思7
解方程是數(shù)學(xué)領(lǐng)域里一個(gè)關(guān)鍵的知識,在實(shí)際中,擁有方程的解法之后,很多人不會算式解題,但是能用方程解題,足以見得方程可以做到一些算式無法超越的能力。而如今五年級的學(xué)生開始學(xué)習(xí)解方程,作為教師的我更應(yīng)該讓學(xué)生吃透這方程,突破這重難點(diǎn)。
在教這單元之前,我一直困惑解方程要采用初中的“移項(xiàng)”解題,還是運(yùn)用書本的“等式性質(zhì)”解題,還有老教材中提到的運(yùn)用關(guān)系式各部分之間的關(guān)系來解決?面對困惑,向老教師請教,學(xué)生該吸收那種方法呢?困惑,學(xué)生該如何下手,運(yùn)用“移項(xiàng)”解題,學(xué)生對于這個(gè)概念或許不會系統(tǒng)清晰,但是“等式性質(zhì)”解題時(shí),在碰到a-x=b和a÷x=b此類的方程,學(xué)生能如何下手,“四則運(yùn)算之間的關(guān)系”老教材的方式改變,必有他的理由,能用嗎?困惑!我先了解改革的原因(摘自教學(xué)參考書):新教材編寫者如此說明:長期以來,小學(xué)教學(xué)簡易方程時(shí),方程變形的依據(jù)總是加減運(yùn)算的`關(guān)系或乘除運(yùn)算之間的關(guān)系,這實(shí)際上是用算術(shù)的思路求未知數(shù)。到了中學(xué)又要另起爐灶,引入等式的基本性質(zhì)或方程的同解原理來教學(xué)解方程。小學(xué)的思路及其算法掌握得越牢固,對中學(xué)代數(shù)起步教學(xué)的負(fù)遷移就越明顯。因此,現(xiàn)在根據(jù)《標(biāo)準(zhǔn)》的要求,從小學(xué)起就引入等式的基本性質(zhì),并以此為基礎(chǔ)導(dǎo)出解方程的方法。這就較為徹底地避免了同一內(nèi)容兩種思路、兩種算理解釋的現(xiàn)象,有利于加強(qiáng)中小學(xué)數(shù)學(xué)教學(xué)的銜接。從這不難看出,為了和中學(xué)教學(xué)解方程的方法保持一致,是此次改革的主要原因。但是從另一方面看出老教材的方法并無錯誤,而且能讓學(xué)生清楚準(zhǔn)確地掌握實(shí)際解題,面對題目不會盲目,而采用等式基本性質(zhì)給學(xué)生帶來的是局部的銜接,而存在局部對學(xué)生會更困難,如a-x=b和a÷x=b此類的方程。了解這一信息,我決定采用新老教材一起使用,先從教材中的運(yùn)用等式基本性質(zhì)教學(xué)孩子會解簡單的方程,以便初中學(xué)習(xí)可以銜接,而初中的“移項(xiàng)”也會順利的接收,但是面對現(xiàn)在五年級的思維和解題的方便性,我再教學(xué)老教材的“四則運(yùn)算關(guān)系”解放程,至少這樣能讓現(xiàn)在的學(xué)生會解各種題型的方程。在我看來,這樣的教學(xué)書本的知識不丟,方法又可以多種變通。
通過這塊知識的整理,我感覺到教材需要教師好好的研究,才能用最合適的方式去教導(dǎo)學(xué)生,數(shù)學(xué)經(jīng)常存在一種一題多解情況,老師就是引導(dǎo)學(xué)生走最好最合適的路。
《解方程》教學(xué)反思8
今天上了解方程(二)的內(nèi)容,感覺沒什么明顯的精彩地方。學(xué)生由于有了關(guān)于加減的等式的性質(zhì)的了解,在通過例題中兩組方程的觀察,適當(dāng)提醒學(xué)生聯(lián)系前面學(xué)習(xí)的等式的性質(zhì),很自然的就能得出有關(guān)乘除的等式的性質(zhì)。
只是在讓學(xué)生舉例的.時(shí)候,沒有學(xué)生能想到同時(shí)除以0,結(jié)果是怎樣的。只能由自己向?qū)W生提出問題,簡單討論后,很快想到除法中除數(shù)不能為0,因而得出同時(shí)除以一個(gè)不為0的數(shù)的范圍。
計(jì)算中有較多的問題,特別是很多學(xué)生對于小數(shù)的乘除法計(jì)算,有很多的錯誤,需要加強(qiáng)鞏固訓(xùn)練。
《解方程》教學(xué)反思9
教材的設(shè)計(jì)打破了傳統(tǒng)的教學(xué)方法,在以前人教版教材中,學(xué)習(xí)解方程之前首先要求學(xué)生掌握加、減、乘、除法各部分之間的關(guān)系,然后利用關(guān)系來求出方程中的未知數(shù),《解方程(二)》教學(xué)反思。而北師大版教材則是借用天平游戲使學(xué)生首先感悟“等式”,知道“等式兩邊都乘同一個(gè)數(shù)(或除以同一個(gè)不為0的數(shù)),等式仍然成立”這個(gè)規(guī)律,這樣才能從真正意義上很好地揭示方程的意義,進(jìn)而學(xué)會解方程,還能使之與中學(xué)的移項(xiàng)解方程建立起聯(lián)系。
原來教學(xué)由于我個(gè)人比較偏好于傳統(tǒng)的教學(xué)方法,在教學(xué)的過程中沒有特別強(qiáng)調(diào)“等式”與由等式引申出來的規(guī)律,從而也就影響了學(xué)生沒能很好地理解等式的性質(zhì),所以大部分的學(xué)生在解方程的時(shí)候,還是運(yùn)用了加、減法各部分間的關(guān)系來計(jì)算,只有極個(gè)別的學(xué)生懂得運(yùn)用等式的性質(zhì)來解決問題。在這次實(shí)驗(yàn)教學(xué)的過程中,我深入了解新教材的涵意——方程是一個(gè)一個(gè)等式,是一個(gè)數(shù)學(xué)模型,是抽象的,而天平是一個(gè)具體的東西,利用天平這樣的事物原形來揭示等式的性質(zhì),把抽象的解方程的過程用形象化的方式表現(xiàn)出來,使學(xué)生更好的理解解方程的過程是一個(gè)等式的恒等變形,教學(xué)反思《《解方程(二)》教學(xué)反思》。并能站在“學(xué)生是學(xué)習(xí)的主人”和“教師是學(xué)習(xí)的組織者、引導(dǎo)者與合作者”的這一角度上,為學(xué)生創(chuàng)設(shè)學(xué)習(xí)此課的情境,提供動手操作、實(shí)踐以及小組合作、討論的.機(jī)會。在教學(xué)的整個(gè)過程中,重點(diǎn)突出了“等式”與“等式兩邊都乘同一個(gè)數(shù)(或除以同一個(gè)不為0的數(shù)),等式仍然成立”這個(gè)規(guī)律,不斷對孩子們進(jìn)行潛移默化地滲透,促使絕大部分的學(xué)生都能靈活地運(yùn)用此規(guī)律來解方程。
盡管如此,仍然存在著許多不足,比如:在驗(yàn)證猜想時(shí),應(yīng)從一個(gè)一個(gè)具體的等式抽象到未知的等式,學(xué)生容易接受,而我是直接用抽象的等式驗(yàn)證的,學(xué)生不太容易接受。還有在解方程時(shí),算理講得不太清楚,學(xué)生在解方程時(shí),有部分學(xué)困生學(xué)起來有困難。
在今后的教學(xué)中,一定要吃透教材,認(rèn)真鉆研教材,才能上出優(yōu)質(zhì)課。
《解方程》教學(xué)反思10
本節(jié)課的教學(xué)重點(diǎn)和難點(diǎn)是:理解“方程的解”、“解方程”兩個(gè)概念;會運(yùn)用天平平衡的道理解簡單的方程。在教學(xué)環(huán)節(jié)的設(shè)計(jì)和安排上,盡量為突破教學(xué)重點(diǎn)和難點(diǎn)服務(wù),因此我進(jìn)行了大膽的嘗試,在講解方程的解時(shí),給學(xué)生一個(gè)明確的目的,告訴他們:“解方程就是為了求出“方程的解”而“方程的解”是一個(gè)神奇的數(shù),由此引起了學(xué)生的好奇心,通過練習(xí)讓學(xué)生充分感知“方程的解”的`神奇之處。
1.本課主要對解方程進(jìn)行了解題練習(xí)。通過搶奪小紅花等游戲的形式大大提高了學(xué)生學(xué)習(xí)數(shù)學(xué)的樂趣和興趣!
2、通過本課的作業(yè)檢測,有少量學(xué)生還是對本課的內(nèi)容練習(xí)不是很到位。需要教師在課下不斷的指導(dǎo)。
3、學(xué)生對于方程的書寫格式掌握的很好,這一點(diǎn)很讓人欣喜.
《解方程》教學(xué)反思11
本節(jié)課的學(xué)生學(xué)習(xí)的重難點(diǎn)是掌握較復(fù)雜方程的解法,會正確分析題目中的數(shù)量關(guān)系;學(xué)習(xí)目標(biāo)是進(jìn)一步掌握列方程解決問題的方法。這一小節(jié)內(nèi)容是在前面初步學(xué)會列方程解比較容易的應(yīng)用題的基礎(chǔ)上,教學(xué)解答稍復(fù)雜的兩步計(jì)算應(yīng)用題。例1若用算術(shù)方法解,需逆思考,思維難度大,學(xué)生容易出現(xiàn)先除后減的錯誤,用方程解,思路比較順,體現(xiàn)了列方程解應(yīng)用題的優(yōu)越性。
一、從學(xué)生喜聞樂見的事物入手,降低問題的難度。
解稍復(fù)雜的方程這部分內(nèi)容煩瑣乏味,解答例1這類應(yīng)用題的關(guān)鍵是找題里數(shù)量間的相等關(guān)系。為了幫助學(xué)生找準(zhǔn)題量的等量關(guān)系。我從學(xué)生喜歡的事物入手,引出數(shù)學(xué)問題,激發(fā)學(xué)生的學(xué)習(xí)數(shù)學(xué)的興趣,又為學(xué)習(xí)新知識做了很多的鋪墊。
二、放手讓學(xué)生思考、解答,選擇解題最佳方案。
讓學(xué)生當(dāng)小老師,從問題中找出數(shù)量之間的關(guān)系,弄清解決問題的思路,展示講解自己的思考過程和結(jié)果,這樣既增加學(xué)生學(xué)習(xí)的信心,又培養(yǎng)學(xué)生分析問題的能力,發(fā)展學(xué)生的思維空間;然后,我大膽放手,讓學(xué)生用自己學(xué)過的方法來解答例1,最后老師讓學(xué)生把各種不同的解法板演在黑板上,讓學(xué)生分析哪種解法合理,再從中選擇最佳解題方案。這樣既突出了最佳解題思路,又強(qiáng)化了列方程解題的優(yōu)越性和解題的.關(guān)鍵,促進(jìn)了學(xué)生邏輯思維的發(fā)展。
三、教會學(xué)生學(xué)習(xí)方法,比教會知識更重要。
應(yīng)用題的教學(xué),關(guān)鍵是理清思路,教給方法,啟迪思維,提高解題能力。這節(jié)課的教學(xué)中,教師敢于大膽放手,讓學(xué)生觀察圖畫,了解畫面信息,白色多少塊,黑色多少塊,白色比黑色少多少等信息,組織學(xué)生小組討論交流,再在練習(xí)本上畫線段圖,然后指導(dǎo)學(xué)生根據(jù)線段圖,分析數(shù)量之間的關(guān)系,討論交流解決問題的方法。
讓學(xué)生成為學(xué)習(xí)的主人,參與到教學(xué)的全過程中去。所以在應(yīng)用題的教學(xué)中,教師要指導(dǎo)學(xué)生學(xué)會分析應(yīng)用題的解題方法,一句話,教會學(xué)生學(xué)習(xí)方法比教會知識更重要,讓學(xué)生真正成為學(xué)習(xí)的主體。教師是教學(xué)過程的組織者、引導(dǎo)者。
《解方程》教學(xué)反思12
小學(xué)五年級第四單元教材的設(shè)計(jì)打破了傳統(tǒng)的教學(xué)方法。在以前人教版教材中,學(xué)習(xí)解方程之前首先要求學(xué)生掌握加、減、乘、除法各部分之間的關(guān)系,然后利用:一個(gè)加數(shù)=和-另一個(gè)加數(shù);被減數(shù)=減數(shù)+差等關(guān)系來求出方程中的未知數(shù)。而新教材則是借用天平游戲使學(xué)生首先感悟“等式”,知道“等式兩邊都加上或減去同一個(gè)數(shù),等式仍然成立”這個(gè)規(guī)律,這樣才能從真正意義上很好地揭示方程的意義,進(jìn)而學(xué)會解方程,還能使之與中學(xué)的移項(xiàng)解方程建立起聯(lián)系。
在教學(xué)前,由于我個(gè)人比較偏好于傳統(tǒng)的教學(xué)方法,總覺得用等式的性質(zhì)解方程比較麻煩。為了轉(zhuǎn)變自己的教學(xué)思想,更新教學(xué)觀念,我深入了解新教材的涵意——方程是一個(gè)一個(gè)等式,是一個(gè)數(shù)學(xué)模型,是抽象的,而天平是一個(gè)具體的東西,利用天平這樣的事物原形來揭示等式的性質(zhì),把抽象的解方程的過程用形象化的方式表現(xiàn)出來,使學(xué)生更好的理解解方程的過程是一個(gè)等式的恒等變形。并能站在“學(xué)生是學(xué)習(xí)的主人”和“教師是學(xué)習(xí)的組織者、引導(dǎo)者與合作者”的這一角度上,為學(xué)生創(chuàng)設(shè)學(xué)習(xí)此課的情境,通過直觀演示,充分給學(xué)生提供小組交流的機(jī)會。在教學(xué)的整個(gè)過程中,重點(diǎn)突出了“等式”與“等式兩邊都加上或減去同一個(gè)數(shù),等式仍然成立”這個(gè)規(guī)律,不斷對孩子們進(jìn)行潛移默化地滲透,促使絕大部分的學(xué)生都能靈活地運(yùn)用此規(guī)律來解方程。從而,我驚喜地發(fā)現(xiàn)孩子們的`學(xué)習(xí)活動是那么的有滋有味,進(jìn)而使我很順利地就完成了本課的教學(xué)任務(wù)。 通過近段時(shí)間的學(xué)習(xí),發(fā)現(xiàn)學(xué)生對這種方法掌握的很好,而且很樂意用等式的性質(zhì)來解方程,但同時(shí)讓我感到了一些困惑:
1、教材的編排上,整體難度下降,有意避開了,形如:45—X=23 56÷X=8等類型的題目。把用等式解決的方法單一化了。在實(shí)際教學(xué)中,如果用等式性質(zhì)來解就比較麻煩。很顯然這種方法存在著目前的局限性。對于好的學(xué)生來說,我們會讓他們嘗試接受——解答X在后面這類方程的解答方法,就是等號二邊同時(shí)加上X,再左右換位置,再二邊減一個(gè)數(shù),真有點(diǎn)麻煩了。而且有的學(xué)生還很難掌握這樣方法。但是用減法和除法各部分之間的關(guān)系解答就比較簡單。
2、 內(nèi)容看似少實(shí)際教得多。難度下降后,看起來教師要教的內(nèi)容變得少了,可以實(shí)際上反而是多了。教師要給他們補(bǔ)充X前面是除號或減號的方程的解法。
總之,要使孩子們愛學(xué)、樂學(xué),教師就必須更新教學(xué)觀念,充分理解教材,并要懂得為教學(xué)去創(chuàng)設(shè)合理情境,靈活處理教材中的問題,鼓勵學(xué)生算法的多樣化,真正體現(xiàn)課改精神——“人人學(xué)有價(jià)值的數(shù)學(xué),人人都能獲得必須的數(shù)學(xué);不同的人在數(shù)學(xué)上得到不同的發(fā)展。
《解方程》教學(xué)反思13
學(xué)生從五年級就開始接觸簡易方程,經(jīng)歷一年多的學(xué)習(xí)對于方程有了一定的認(rèn)識,然而為何要設(shè)單位“1”的量為未知數(shù)這個(gè)問題在列方程解決稍復(fù)雜的分?jǐn)?shù)實(shí)際問題時(shí)就一直困擾著學(xué)生。列方程解決稍復(fù)雜的百分?jǐn)?shù)實(shí)際問題是小學(xué)階段的最后一個(gè)有關(guān)方程學(xué)習(xí)的單元,因此有必要從本質(zhì)上去撥開學(xué)生心中為何要設(shè)單位“1”的量為未知數(shù)的那團(tuán)云。正好借助這節(jié)課通過對比分析的方法幫助學(xué)生很好的解決這個(gè)困惑。
案例描述:蘇教版數(shù)學(xué)六年級下冊教材
教材例5:朝陽小學(xué)美術(shù)組有36人,女生人數(shù)是男生人數(shù)的80%。美術(shù)組男生、女生各多少人?
學(xué)生能很快根據(jù)題目條件進(jìn)行相關(guān)的找單位“1”分析數(shù)量關(guān)系的解題前期準(zhǔn)備,經(jīng)歷這這兩步后學(xué)生通過已有經(jīng)驗(yàn)可以很快確定用方程的策略來解決這個(gè)問題。
在教學(xué)的過程中,筆者故意提出:這里男生人數(shù)和女生人數(shù)都是未知的,那么你們覺得怎樣設(shè)未知數(shù)比較合理呢?學(xué)生在底下開始異口同聲地回答設(shè)單位“1”的量也就是男生人數(shù)為未知數(shù)比較合理。設(shè)美術(shù)組有男生X人,女生就有80%X人。那么根據(jù)等量關(guān)系式:男人人數(shù)+女生人數(shù)=36學(xué)生很自然地列出方程
X+80%X=36。就在大家十分“得意”的時(shí)候,一個(gè)小男孩發(fā)表了自己不同的意見:“也可以把女生人數(shù)設(shè)為X。”剛開始很多同學(xué)覺得有點(diǎn)不可思議,以前做這類問題不都是將男生人數(shù)(單位“1”)設(shè)為未知數(shù)X的嗎?抓住這個(gè)千載難逢的機(jī)會,我就讓他說說他是怎么想的。他是這么說的:設(shè)女生人數(shù)是X人,男生人數(shù)是X÷80%人,根據(jù)等量關(guān)系式:男人人數(shù)+女生人數(shù)=36列出方程:X+X÷80%=36。聽完他精彩的發(fā)言,大家恍然大悟,原來還可以這樣?
仔細(xì)回想這個(gè)聰明男孩的問題,原來數(shù)學(xué)真的需要動腦。這個(gè)問題在學(xué)習(xí)分?jǐn)?shù)除法之前教材是一直在回避的,到了這里我靈機(jī)一動將題目改成:教材例5:朝陽小學(xué)美術(shù)組有36人,女生人數(shù)是男生人數(shù)的2倍。美術(shù)組男生、女生各多少人?那你覺得這個(gè)問題我們以前是怎么解決的?學(xué)生很自然的想到把一份數(shù)男生人數(shù)設(shè)為X人,女生有2X人,方程:X+2X=36。那如果一定要把女生人數(shù)設(shè)為X人呢?學(xué)生思考了一會列出:X+X÷2=36,這個(gè)方程沒有學(xué)習(xí)分?jǐn)?shù)除法之前學(xué)生是沒有辦法解出來的,可能這就是教材一直回避的重要原因吧。但是學(xué)生學(xué)習(xí)了分?jǐn)?shù)除法,理解了分?jǐn)?shù)和百分?jǐn)?shù)的意義之后憑借自己的理解列出超乎常規(guī)的方程的勇氣是值得肯定的`。經(jīng)過這兩個(gè)問題的對比,學(xué)生明白了設(shè)未知量也是很重要的。課上到這里,并不是去推翻學(xué)生已有的經(jīng)驗(yàn),而是讓學(xué)生有這樣一種意識:數(shù)學(xué)很多時(shí)候不是一種硬性規(guī)定,遇到這類問題只能設(shè)單位“1”的量為未知數(shù)。于是我順?biāo)浦圩寣W(xué)生比較了這兩個(gè)方程:X+80%X=36、X+X÷80%=36哪一個(gè)解起來不較容易?學(xué)生通過計(jì)算終于明白:X+80%X=36方程的優(yōu)越性,于是又回到了:男生人數(shù)和女生人數(shù)都是未知的,那么你們覺得怎樣設(shè)未知數(shù)比較合理呢?通過這樣的對比進(jìn)一步讓學(xué)生體驗(yàn)到了:設(shè)男生人有X人(單位“1”的量為未知數(shù)的)合理性,不僅僅能很快表示出女生80%X人,而且X+80%X=36是學(xué)生熟悉的形如:aX+bX=c(這里a,b,c已知),而X+X÷80%=36這個(gè)方程不是學(xué)生熟悉的類型,是需要學(xué)生根據(jù)除法將它轉(zhuǎn)化為aX+bX=c,這一步轉(zhuǎn)化至關(guān)重要。經(jīng)過上述的兩次對比學(xué)生終于明白了:為什么在設(shè)未知量的時(shí)候一般要把單位“1”的量設(shè)為未知數(shù)了。有了這樣的深刻的體驗(yàn),學(xué)生解決這類問題就十分自然,心中的困惑可能就會煙消云散。
《解方程》教學(xué)反思14
這次教材的設(shè)計(jì)打破了傳統(tǒng)的教學(xué)方法,在以前人教版教材中,學(xué)習(xí)解方程之前首先要求學(xué)生掌握加、減、乘、除法各部分之間的關(guān)系,然后利用關(guān)系來求出方程中的未知數(shù)。而北師大版教材則是借用天平游戲使學(xué)生首先感悟“等式”,知道“等式兩邊都乘同一個(gè)數(shù)(或除以同一個(gè)不為0的數(shù)),等式仍然成立”這個(gè)規(guī)律,這樣才能從真正意義上很好地揭示方程的意義,進(jìn)而學(xué)會解方程,還能使之與中學(xué)的移項(xiàng)解方程建立起聯(lián)系。
原來教學(xué)由于我個(gè)人比較偏好于傳統(tǒng)的教學(xué)方法,在教學(xué)的過程中沒有特別強(qiáng)調(diào)“等式”與由等式引申出來的規(guī)律,從而也就影響了學(xué)生沒能很好地理解等式的性質(zhì),所以大部分的學(xué)生在解方程的時(shí)候,還是運(yùn)用了加、減法各部分間的關(guān)系來計(jì)算,只有極個(gè)別的學(xué)生懂得運(yùn)用等式的性質(zhì)來解決問題。在這次實(shí)驗(yàn)教學(xué)的過程中,我深入了解新教材的涵意——方程是一個(gè)一個(gè)等式,是一個(gè)數(shù)學(xué)模型,是抽象的,而天平是一個(gè)具體的.東西,利用天平這樣的事物原形來揭示等式的性質(zhì),把抽象的解方程的過程用形象化的方式表現(xiàn)出來,使學(xué)生更好的理解解方程的過程是一個(gè)等式的恒等變形。并能站在“學(xué)生是學(xué)習(xí)的主人”和“教師是學(xué)習(xí)的組織者、引導(dǎo)者與合作者”的這一角度上,為學(xué)生創(chuàng)設(shè)學(xué)習(xí)此課的情境,提供動手操作、實(shí)踐以及小組合作、討論的機(jī)會。在教學(xué)的整個(gè)過程中,重點(diǎn)突出了“等式”與“等式兩邊都乘同一個(gè)數(shù)(或除以同一個(gè)不為0的數(shù)),等式仍然成立”這個(gè)規(guī)律,不斷對孩子們進(jìn)行潛移默化地滲透,促使絕大部分的學(xué)生都能靈活地運(yùn)用此規(guī)律來解方程。
盡管如此,仍然存在著許多不足,比如:在驗(yàn)證猜想時(shí),應(yīng)從一個(gè)一個(gè)具體的等式抽象到未知的等式,學(xué)生容易接受,而我是直接用抽象的等式驗(yàn)證的,學(xué)生不太容易接受。還有在解方程時(shí),算理講得不太清楚,學(xué)生在解方程時(shí),有部分學(xué)困生學(xué)起來有困難。
在今后的教學(xué)中,一定要吃透教材,認(rèn)真鉆研教材,才能上出優(yōu)質(zhì)課。
《解方程》教學(xué)反思15
《解方程》這部分內(nèi)容,是數(shù)與代數(shù)領(lǐng)域中的一個(gè)重要內(nèi)容,是“代數(shù)”教學(xué)的起始單元,對于滲透與發(fā)展學(xué)生的代數(shù)思想有著極其重要的作用。
在開課時(shí),通過復(fù)習(xí)哪些是方程,鞏固方程的含義,為后面教學(xué)作鋪墊。
教學(xué)時(shí),我讓學(xué)生自己說出推想過程,一邊板書,一邊指出解題的想法,然后著重講解檢驗(yàn)的方法及書寫格式,并在后面的鞏固練習(xí)當(dāng)中加入口答檢驗(yàn),根據(jù)課本上的“注意”強(qiáng)調(diào)說明雖然不要求每題都寫出檢驗(yàn),但都要口算進(jìn)行檢驗(yàn),使學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣。
在出示概念時(shí),先讓學(xué)生自學(xué)了概念。自學(xué)完概念后,應(yīng)讓學(xué)生對兩概念講講自己的理解,自己勾畫出重點(diǎn)字,然后才是教師對概念重點(diǎn)的強(qiáng)調(diào),這樣更能區(qū)分兩概念不同的含義,對難點(diǎn)的突破也是一個(gè)很好的`方法,可以讓學(xué)生將易混易錯的地方,清楚理解后,明確兩概念的區(qū)別,這點(diǎn)在課上忽略了。
在后面的反饋練習(xí)時(shí),因前面例題的格式講的還不夠明確,所以練習(xí)時(shí)有點(diǎn)反復(fù),但在后面的練習(xí)中學(xué)生已完全掌握。鞏固練習(xí)的層次很好,由易到難,對學(xué)生的學(xué)習(xí)有突破,學(xué)生完成的正確率也很高。
這節(jié)課整體來說我比較滿意,對于細(xì)節(jié)上的處理。在今后的教學(xué)中我會更加注意,使教學(xué)更加嚴(yán)謹(jǐn),也會更注意教材的研讀,爭取上一節(jié)完美的好課。
【《解方程》教學(xué)反思】相關(guān)文章:
《解方程》的教學(xué)反思04-07
解方程教學(xué)反思02-05
《解方程二》教學(xué)反思03-28
解方程二的教學(xué)反思02-05
《解方程》教學(xué)反思15篇04-07
解方程教學(xué)反思15篇02-25
《解方程二》教學(xué)反思7篇04-07